Global Sequencing of Proteolytic Cleavage Sites in Apoptosis by Specific Labeling of Protein N Termini

نویسندگان

  • Sami Mahrus
  • Jonathan C. Trinidad
  • David T. Barkan
  • Andrej Sali
  • Alma L. Burlingame
  • James A. Wells
چکیده

The nearly 600 proteases in the human genome regulate a diversity of biological processes, including programmed cell death. Comprehensive characterization of protease signaling in complex biological samples is limited by available proteomic methods. We have developed a general approach for global identification of proteolytic cleavage sites using an engineered enzyme to selectively biotinylate free protein N termini for positive enrichment of corresponding N-terminal peptides. Using this method to study apoptosis, we have sequenced 333 caspase-like cleavage sites distributed among 292 protein substrates. These sites are generally not predicted by in vitro caspase substrate specificity but can be used to predict other physiological caspase cleavage sites. Structural bioinformatic studies show that caspase cleavage sites often appear in surface-accessible loops and even occasionally in helical regions. Strikingly, we also find that a disproportionate number of caspase substrates physically interact, suggesting that these dimeric proteases target protein complexes and networks to elicit apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini.

Proteolysis has major roles in diverse biologic processes and regulates the activity, localization, and intracellular levels of proteins. Linking signaling pathways and physiologic processes to specific proteolytic processing events is a major challenge in signal transduction research. Here, we describe N-CLAP (N-terminalomics by chemical labeling of the alpha-amine of proteins), a general appr...

متن کامل

Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability

Many mitochondrial proteins are synthesized with N-terminal presequences that are removed by specific peptidases. The N-termini of the mature proteins and thus peptidase cleavage sites have only been determined for a small fraction of mitochondrial proteins and yielded a controversial situation for the cleavage site specificity of the major mitochondrial processing peptidase (MPP). We report a ...

متن کامل

TopFIND 2.0—linking protein termini with proteolytic processing and modifications altering protein function

Protein termini provide critical insights into the functional state of individual proteins. With recent advances in specific proteomics approaches to enrich for N- and C-terminomes, the global analysis of whole terminomes at a proteome-wide scale is now possible. Information on the actual N- and C-termini of proteins in vivo and any post-translational modifications, including their generation b...

متن کامل

Molecular detection of proteolytic activity of human parechovirus 2A protein by gene expression

  Parechoviruses form one of the nine genera in the picornaviridae family, and include two human pathogens: Human parechovirus type1 and 2 (Hpev1 and Hpev2). The genome of picornaviruses encodes a single polyprotein, which undergoes a cleavage cascade performed by virus encoded proteases to give the final virus proteins. The primary cleavage occurs by 2A protein and this step is critical for vi...

متن کامل

TAILS N-terminomics of human platelets reveals pervasive metalloproteinase-dependent proteolytic processing in storage.

Proteases, and specifically metalloproteinases, have been linked to the loss of platelet function during storage before transfusion, but the underlying mechanisms remain unknown. We used a dedicated N-terminomics technique, iTRAQ terminal amine isotopic labeling of substrates (TAILS), to characterize the human platelet N-terminome, proteome, and posttranslational modifications throughout platel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2008