Intelligent Parameter Tuning in Optimization-based Iterative CT Reconstruction via Deep Reinforcement Learning
نویسندگان
چکیده
A number of image-processing problems can be formulated as optimization problems. The objective function typically contains several terms specifically designed for different purposes. Parameters in front of these terms are used to control the relative weights among them. It is of critical importance to tune these parameters, as quality of the solution depends on their values. Tuning parameter is a relatively straightforward task for a human, as one can intelligently determine the direction of parameter adjustment based on the solution quality. Yet manual parameter tuning is not only tedious in many cases, but becomes impractical when a number of parameters exist in a problem. Aiming at solving this problem, this paper proposes an approach that employs deep reinforcement learning to train a system that can automatically adjust parameters in a human-like manner. We demonstrate our idea in an example problem of optimizationbased iterative CT reconstruction with a pixel-wise total-variation regularization term. We set up a parameter tuning policy network (PTPN), which maps an CT image patch to an output that specifies the direction and amplitude by which the parameter at the patch center is adjusted. We train the PTPN via an end-to-end reinforcement learning procedure. We demonstrate that under the guidance of the trained PTPN for parameter tuning at each pixel, reconstructed CT images attain quality similar or better than in those reconstructed with manually tuned parameters.
منابع مشابه
BPConvNet for compressed sensing recovery in bioimaging
Iterative reconstruction methods have become the standard approach to solving inverse problems in imaging including denoising [1], [2], [3], deconvolution [4], and interpolation [5]. With the appearance of compressed sensing [6], our theoretical understanding of these approaches evolved further with remarkable outcomes [7], [8]. These advances have been particularly influential in the field of ...
متن کاملDeep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis
Recently, compressed sensing (CS) computed tomography (CT) using sparse projection views has been extensively investigated to reduce the potential risk of radiation to patient. However, due to the insufficient number of projection views, an analytic reconstruction approach results in severe streaking artifacts and CS-based iterative approach is computationally very expensive. To address this is...
متن کاملBayesian Optimization with Robust Bayesian Neural Networks
Bayesian optimization is a prominent method for optimizing expensive-to-evaluate black-box functions that is widely applied to tuning the hyperparameters of machine learning algorithms. Despite its successes, the prototypical Bayesian optimization approach – using Gaussian process models – does not scale well to either many hyperparameters or many function evaluations. Attacking this lack of sc...
متن کاملAuto-tuned Path-based Iterative Reconstruction (aPBIR) for X-ray Computed Tomography
Model-based iterative reconstruction (MBIR) techniques have demonstrated many advantages in X-ray CT image reconstruction. The tuning parameter value in MBIR that regulates the strength of the penalty function is critical for achieving good reconstruction results but difficult to choose. The path-based iterative reconstruction (PBIR) method empowered by the path seeking algorithm is capable of ...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.00414 شماره
صفحات -
تاریخ انتشار 2017