Gene conversion tracts from double-strand break repair in mammalian cells.

نویسندگان

  • B Elliott
  • C Richardson
  • J Winderbaum
  • J A Nickoloff
  • M Jasin
چکیده

Mammalian cells are able to repair chromosomal double-strand breaks (DSBs) both by homologous recombination and by mechanisms that require little or no homology. Although spontaneous homologous recombination is rare, DSBs will stimulate recombination by 2 to 3 orders of magnitude when homology is provided either from exogenous DNA in gene-targeting experiments or from a repeated chromosomal sequence. Using a gene-targeting assay in mouse embryonic stem cells, we now investigate the effect of heterology on recombinational repair of DSBs. Cells were cotransfected with an endonuclease expression plasmid to induce chromosomal DSBs and with substrates containing up to 1.2% heterology from which to repair the DSBs. We find that heterology decreases the efficiency of recombinational repair, with 1.2% sequence divergence resulting in an approximately sixfold reduction in recombination. Gene conversion tract lengths were examined in 80 recombinants. Relatively short gene conversion tracts were observed, with 80% of the recombinants having tracts of 58 bp or less. These results suggest that chromosome ends in mammalian cells are generally protected from extensive degradation prior to recombination. Gene conversion tracts that were long (up to 511 bp) were continuous, i.e., they contained an uninterrupted incorporation of the silent mutations. This continuity suggests that these long tracts arose from extensive degradation of the ends or from formation of heteroduplex DNA which is corrected with a strong bias in the direction of the unbroken strand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein.

Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In th...

متن کامل

Double-Strand Break Repair Assays Determine Pathway Choice and Structure of Gene Conversion Events in Drosophila melanogaster

Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to ...

متن کامل

The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.

In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisia...

متن کامل

The effect of heterologous insertions on gene conversion in mitotically dividing cells in Drosophila melanogaster.

We examined the influence that heterologous sequences of different sizes have on the frequency of double-strand-break repair by gene conversion in Drosophila melanogaster. We induced a double-strand break on one X chromosome in female flies by P-element excision. These flies contained heterologous insertions of various sizes located 238 bp from the break site in cis or in trans to the break, or...

متن کامل

Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats

Homologous recombination (HR) repairs DNA double-strand breaks and maintains genome stability. HR between linked, direct repeats can occur by gene conversion without an associated crossover that maintains the gross repeat structure. Alternatively, direct repeat HR can occur by gene conversion with a crossover, or by single-strand annealing (SSA), both of which delete one repeat and the sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 1998