Ictal but Not Interictal Epileptic Discharges Activate Astrocyte Endfeet and Elicit Cerebral Arteriole Responses
نویسندگان
چکیده
Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal discharge, evokes both a Ca(2+) increase in astrocyte endfeet and a vasomotor response. We also observed that rapid ictal discharge-induced arteriole responses were regularly preceded by Ca(2+) elevations in endfeet and were abolished by pharmacological inhibition of Ca(2+) signals in these astrocyte processes. Under these latter conditions, arterioles exhibited after the ictal discharge only slowly developing vasodilations. The poor efficacy of interictal discharges, compared with ictal discharges, to activate endfeet was confirmed also in the intact in vitro isolated guinea pig brain. Although the possibility of a direct contribution of neurons, in particular in the late response of cerebral blood vessels to epileptic discharges, should be taken into account, our study supports the view that astrocytes are central for neurovascular coupling also in the epileptic brain. The massive endfeet Ca(2+) elevations evoked by ictal discharges and the poor response to interictal events represent new information potentially relevant to interpret data from diagnostic brain imaging techniques, such as functional magnetic resonance, utilized in the clinic to localize neural activity and to optimize neurosurgery of untreatable epilepsies.
منابع مشابه
Glowing feet control the blood of seizures.
Commentary Astrocytes of the healthy brain fulfill an important homeo-static role to couple neuronal activity to cerebral blood flow, and thereby to adapt local cerebral blood flow to metabolic demands, a phenomenon termed neurovascular coupling (1, 2). Astrocytes react to neuronal activity by a rise in intracel-lular Ca 2+ , and it is the increase in Ca 2+ in the astrocytic endfeet that enshea...
متن کاملEffect of the Entorhinal Cortex on Ictal Discharges in Low-Mg2+-Induced Epileptic Hippocampal Slice Models
The hippocampus plays an important role in the genesis of mesial temporal lobe epilepsy, and the entorhinal cortex (EC) may affect the hippocampal network activity because of the heavy interconnection between them. However, the mechanism by which the EC affects the discharge patterns and the transmission mode of epileptiform discharges within the hippocampus needs further study. Here, multielec...
متن کاملEEG-fMRI study of the ictal and interictal epileptic activity in patients with eyelid myoclonia with absences.
PURPOSE To investigate the blood oxygenation level-dependent (BOLD) signal changes correlated with ictal and interictal epileptic discharges using electroencephalography-correlated functional magnetic resonance imaging (EEG-fMRI) in patients with eyelid myoclonia with absences (EMA) and then to explore the pathophysiological mechanisms of epileptic discharges and their effect on brain function....
متن کاملLow-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy
We previously reported that low-frequency electric cortical stimulation (LFECS) directly applied to the epileptic focus by means of subdural electrodes decreased the number of interictal epileptiform discharges in patients with intractable partial epilepsy. In the present study, LFECS was applied to the epileptic foci directly in four patients with medically intractable partial epilepsy through...
متن کاملCA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures.
Continuous application of 4-aminopyridine (4-AP, 50 microM) to combined slices of hippocampus-entorhinal cortex obtained from adult mice induces (1) interictal discharges that initiate in the CA3 area and propagate via the hippocampal regions CA1 and subiculum to the entorhinal cortex and return to the hippocampus through the dentate gyrus; and (2) ictal discharges that originate in the entorhi...
متن کامل