Practical filtering for stochastic volatility models

نویسنده

  • Jonathan R. Stroud
چکیده

This paper provides a simulation-based approach to filtering and sequential parameter learning for stochastic volatility models. We develop a fast simulation-based approach using the practical filter of Polson, Stroud and Müller (2002). We compare our approach to sequential parameter learning and filtering with an auxiliary particle filtering algorithm based on Storvik (2002). For simulated data, there is close agreement between the two methods. For data on the S&P 500 market stock index from 1984–90, our algorithm agrees closely with a full MCMC analysis, whereas the auxiliary particle filter degenerates. State Space and Unobserved Component Models: Theory and Applications, eds. Andrew C. Harvey, Siem Jan Koopman and Neil Shephard. Published by Cambridge University Press. C © Cambridge University Press 2004

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models

In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offset mixture model, followed by an importance reweighting procedure. This approach is compared with ...

متن کامل

Stochastic Models for Pricing Weather Derivatives using Constant Risk Premium

‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing  weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...

متن کامل

Simulating Exchange Rate Volatility in Iran Using Stochastic Differential ‎Equations‎

‎The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic  variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...

متن کامل

Bayesian Dynamic Factor Models and Portfolio Allocation

We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of...

متن کامل

NCER Working Paper Series Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter

Many approaches have been proposed for estimating stochastic volatility (SV) models, a number of which are filtering methods. While non-linear filtering methods are superior to linear approaches, non-linear filtering methods have not gained a wide acceptance in the econometrics literature due to their computational cost. This paper proposes a discretised non-linear filtering (DNF) algorithm for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003