Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles.
نویسندگان
چکیده
Hydrophobic uncharged drugs such as docetaxel are difficult to encapsulate and retain in liposomal nanoparticles (LNP). In this work we show that a weak base derivative of docetaxel can be actively loaded into LNP using pH gradient loading techniques to achieve stable drug encapsulation and controlled release properties. Docetaxel was derivatized at the hydroxyl group in the C-2' position to form an N-methyl-piperazinyl butanoic acid ester. The free hydroxyl group in this position is essential for anticancer activity and the prodrug has, therefore, to be converted into the parent drug (docetaxel) to restore activity. Cytotoxicity testing against a panel of cancer cell lines (breast, prostate and ovarian cancer) demonstrated that the prodrug is readily converted into active drug; the derivative was found to be as active as the parent drug in vitro. The docetaxel derivative can be efficiently loaded at high drug-to-lipid ratios (up to 0.4 mg/mg) into LNP using pH loading techniques. Pharmacokinetic, tolerability and efficacy studies in mice demonstrate that the LNP-encapsulated prodrug has the long drug circulation half-life required for efficient tumor accumulation (50-100 times higher drug plasma levels compared with free derivative and Taxotere, the commercial docetaxel formulation), is active in a xenograft model of breast cancer (MDA-MB-435/LCC6), and is well tolerated at i.v. doses of 3 times higher than the maximum tolerated dose (MTD) of the parent drug. This is the first demonstration that a therapeutically active, remote-loaded, controlled-release LNP formulation of a taxane can be achieved. The approach reported here has broad applicability to other approved drugs as well as new chemical entities.
منابع مشابه
Comparison of Different Crosslinking Methods for Preparation of Docetaxel-loaded Albumin Nanoparticles
AbstractIn the last step of desolvation method for preparation of albumin nanoparticles, glutaraldehyde (GA) is added to stabilize the newly formed nanoparticles. Due to undesirable effects of GA, the objective of this study was to evaluate alternative methods of crosslinking including ultraviolet (UV) irradiation, adding of glucose and combination of both methods. The nanoparticles were prepar...
متن کاملComparison of Different Crosslinking Methods for Preparation of Docetaxel-loaded Albumin Nanoparticles
AbstractIn the last step of desolvation method for preparation of albumin nanoparticles, glutaraldehyde (GA) is added to stabilize the newly formed nanoparticles. Due to undesirable effects of GA, the objective of this study was to evaluate alternative methods of crosslinking including ultraviolet (UV) irradiation, adding of glucose and combination of both methods. The nanoparticles were prepar...
متن کاملDocetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect
In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...
متن کاملDocetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect
In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...
متن کاملEnhancing Therapeutic Effects of Docetaxel-Loaded Dendritic Copolymer Nanoparticles by Co-Treatment with Autophagy Inhibitor on Breast Cancer
Dendrimers are synthetic nanocarriers that comprise a highly branched spherical polymer as new, efficient tools for drug delivery. However, the fate of nanocarriers after being internalized into cells has seldom been studied. Docetaxel loaded dendritic copolymer H40-poly(D,L-lactide) nanoparticles, referred to as "DTX-H40-PLA NPs", were prepared and used as a model to evaluate whether the NPs w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 144 3 شماره
صفحات -
تاریخ انتشار 2010