Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation.
نویسندگان
چکیده
Pulmonary vasoconstriction and vascular medial hypertrophy greatly contribute to the elevated pulmonary vascular resistance in patients with pulmonary hypertension. A rise in cytosolic free Ca(2+) ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (E(m)) regulates [Ca(2+)](cyt) by governing Ca(2+) influx through voltage-dependent Ca(2+) channels. Thus intracellular Ca(2+) may serve as a shared signal transduction element that leads to pulmonary vasoconstriction and vascular remodeling. In PASMC, activity of voltage-gated K(+) (Kv) channels regulates resting E(m). In this study, we investigated whether changes of Kv currents [I(K(V))], E(m), and [Ca(2+)](cyt) affect cell growth by comparing these parameters in proliferating and growth-arrested PASMC. Serum deprivation induced growth arrest of PASMC, whereas chelation of extracellular Ca(2+) abolished PASMC growth. Resting [Ca(2+)](cyt) was significantly higher, and resting E(m) was more depolarized, in proliferating PASMC than in growth-arrested cells. Consistently, whole cell I(K(V)) was significantly attenuated in PASMC during proliferation. Furthermore, E(m) depolarization significantly increased resting [Ca(2+)](cyt) and augmented agonist-mediated rises in [Ca(2+)](cyt) in the absence of extracellular Ca(2+). These results demonstrate that reduced I(K(V)), depolarized E(m), and elevated [Ca(2+)](cyt) may play a critical role in stimulating PASMC proliferation. Pulmonary vascular medial hypertrophy in patients with pulmonary hypertension may be partly caused by a membrane depolarization-mediated increase in [Ca(2+)](cyt) in PASMC.
منابع مشابه
Augmented K(+) currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis.
The balance between apoptosis and proliferation in pulmonary artery smooth muscle cells (PASMCs) is important in maintaining normal pulmonary vascular structure. Activity of voltage-gated K(+) (K(V)) channels has been demonstrated to regulate cell apoptosis and proliferation. Treatment of PASMCs with staurosporine (ST) induced apoptosis in PASMCs, augmented K(V) current [I(K(V))], and induced m...
متن کاملHypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels
Activity of voltage-gated potassium (Kv) channels controls membrane potential, which subsequently regulates cytoplasmic free calcium concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMCs). Acute hypoxia inhibits Kv channel function in PASMCs, inducing membrane depolarization and a rise in [Ca2+ ]cyt that triggers vasoconstriction. Prolonged hypoxia inhibits expression of Kv ...
متن کاملc-Jun decreases voltage-gated K(+) channel activity in pulmonary artery smooth muscle cells.
BACKGROUND Activity of voltage-gated K(+) (K(v)) channels controls membrane potential (E(m)) that regulates cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) by regulating voltage-dependent Ca(2+) channel function. A rise in [Ca(2+)](cyt) in pulmonary artery smooth muscle cells (PASMCs) triggers vasoconstriction and stimulates PASMC proliferation. Whether c-Jun, a transcription factor that st...
متن کاملNitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells.
Nitric oxide (NO) is an endogenous endothelium-derived relaxing factor that regulates vascular smooth muscle cell proliferation and apoptosis. This study investigated underlying mechanisms involved in NO-induced apoptosis in human and rat pulmonary artery smooth muscle cells (PASMC). Exposure of PASMC to NO, which was derived from the NO donor S-nitroso-N-acetyl-penicillamine, increased the per...
متن کاملMicroRNA-138 promotes proliferation and suppresses mitochondrial depolarization in human pulmonary artery smooth muscle cells through targeting TASK-1
MicroRNA (miR)‑138 serves an important role in the proliferation, differentiation and apoptosis of human pulmonary artery smooth muscle cells (HPASMCs), indi-cating the involvement of miR‑138 in the development and progression of pulmonary artery hypertension (PAH). Potassium channel subfamily K member 3 (TASK‑1), a two‑pore domain K+ channel, is expressed in HPASMCs and is associated with hypo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 279 5 شماره
صفحات -
تاریخ انتشار 2000