Voltage-Dependent Inactivation of MscS Occurs Independently of the Positively Charged Residues in the Transmembrane Domain
نویسندگان
چکیده
MscS (mechanosensitive channel of small conductance) is ubiquitously found among bacteria and plays a major role in avoiding cell lysis upon rapid osmotic downshock. The gating of MscS is modulated by voltage, but little is known about how MscS senses membrane potential. Three arginine residues (Arg-46, Arg-54, and Arg-74) in the transmembrane (TM) domain are possible to respond to voltage judging from the MscS structure. To examine whether these residues are involved in the voltage dependence of MscS, we neutralized the charge of each residue by substituting with asparagine (R46N, R54N, and R74N). Mechanical threshold for the opening of the expressed wild-type MscS and asparagine mutants did not change with voltage in the range from -40 to +100 mV. By contrast, inactivation process of wild-type MscS was strongly affected by voltage. The wild-type MscS inactivated at +60 to +80 mV but not at -60 to +40 mV. The voltage dependence of the inactivation rate of all mutants tested, that is, R46N, R54N, R74N, and R46N/R74N MscS, was almost indistinguishable from that of the wild-type MscS. These findings indicate that the voltage dependence of the inactivation occurs independently of the positive charges of R46, R54, and R74.
منابع مشابه
Role of S4 positively charged residues in the regulation of Kv4.3 inactivation and recovery.
The molecular and biophysical mechanisms by which voltage-sensitive K(+) (Kv)4 channels inactivate and recover from inactivation are presently unresolved. There is a general consensus, however, that Shaker-like N- and P/C-type mechanisms are likely not involved. Kv4 channels also display prominent inactivation from preactivated closed states [closed-state inactivation (CSI)], a process that app...
متن کاملS1–S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation
The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promot...
متن کاملS4 Charges Move Close to Residues in the Pore Domain during Activation in a K Channel
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an imp...
متن کاملHydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels
Kv11.1 channels are critical for the maintenance of a normal heart rhythm. The flow of potassium ions through these channels is controlled by two voltage-regulated gates, termed "activation" and "inactivation," located at opposite ends of the pore. Crucially in Kv11.1 channels, inactivation gating occurs much more rapidly, and over a distinct range of voltages, compared with activation gating. ...
متن کاملElectrostatic interaction in the NH(2)-terminus accelerates inactivation of the Kv1.4 channel.
Inactivation of potassium channels plays an important role in shaping the electrical signalling properties of nerve and muscle cells. While it has been assumed that the rapid inactivation of the Kv1.4 channel is controlled by a "ball and chain" inactivation mechanism, the chain structure of the channel has not been well defined. Here, by conducting electrophysiological studies on variants conta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016