Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure.
نویسندگان
چکیده
The cell walls of mycobacteria form an exceptional permeability barrier, and they are essential for virulence. They contain extractable lipids and long-chain mycolic acids that are covalently linked to peptidoglycan via an arabinogalactan network. The lipids were thought to form an asymmetrical bilayer of considerable thickness, but this could never be proven directly by microscopy or other means. Cryo-electron tomography of unperturbed or detergent-treated cells of Mycobacterium smegmatis embedded in vitreous ice now reveals the native organization of the cell envelope and its delineation into several distinct layers. The 3D data and the investigation of ultrathin frozen-hydrated cryosections of M. smegmatis, Myobacterium bovis bacillus Calmette-Guérin, and Corynebacterium glutamicum identified the outermost layer as a morphologically symmetrical lipid bilayer. The structure of the mycobacterial outer membrane necessitates considerable revision of the current view of its architecture. Conceivable models are proposed and discussed. These results are crucial for the investigation and understanding of transport processes across the mycobacterial cell wall, and they are of particular medical relevance in the case of pathogenic mycobacteria.
منابع مشابه
CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin
Many pathogenic bacteria produce pore-forming toxins to attack and kill human cells. We have determined the 4.5 Å structure of the ~2.2 MDa pore complex of pneumolysin, the main virulence factor of Streptococcus pneumoniae, by cryoEM. The pneumolysin pore is a 400 Å ring of 42 membrane-inserted monomers. Domain 3 of the soluble toxin refolds into two ~85 Å β-hairpins that traverse the lipid bil...
متن کاملImproving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box.
Cryo-electron tomography of vitreous cryo-sections is the most suitable method for exploring the 3D organization of biological samples that are too large to be imaged in an intact state. Producing good quality vitreous cryo-sections, however, is challenging. Here, we focused on the major obstacles to success: contamination in and around the microtome, and attachment of the ribbon of sections to...
متن کاملDirect visualization of the outer membrane of mycobacteria and corynebacteria in their native state.
The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on con...
متن کاملCryo-electron microscopy of coagulation Factor VIII bound to lipid nanotubes.
Factor VIII (FVIII) is a key protein in blood coagulation, deficiency or malfunction of which causes Haemophilia A. The sole cure for this condition is intravenous administration of FVIII, whose membrane-bound structure we have studied by Cryo-electron microscopy and image analysis. Self-assembled lipid nanotubes were optimised to bind FVIII at close to native conditions. The tubes diameter was...
متن کاملMolecular Cryo-Electron Tomography of Skin
The three-dimensional structure of skin can be studied at near-native conditions at the molecular level with a new technique called molecular electron tomography of vitreous tissue sections (tissue TOVIS). Its usage is, however, still largely limited by a difficult sample handling procedure. Here we discuss some measures for the efficient application of tissue TOVIS to dermatological research.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 10 شماره
صفحات -
تاریخ انتشار 2008