Non-Conserved Residues in Clostridium acetobutylicum tRNAAla Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch
نویسندگان
چکیده
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNA(Ala) directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNA(Ala) (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNA(Ala) species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNA(Ala) may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.
منابع مشابه
Two-codon T-box riboswitch binding two tRNAs.
T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might e...
متن کاملA Tyrosine-Dependent Riboswitch Controls the Expression of a Tyrosyl-tRNA Synthetase from Acidithiobacillus ferrooxidans
Expression of aminoacyl-tRNA synthetases is regulated by a variety of mechanisms at the level of transcription or translation. A T-box dependent transcription termination / antitermination riboswitch system that responds to charged / uncharged tRNA regulates expression of aminoacyl tRNA synthetase genes in Gram-positive bacteria. TyrZ, the gene encoding tyrosyl-tRNA synthetase from Acidithiobac...
متن کاملTrans-editing of mischarged tRNAs.
Aminoacyl-tRNA synthetases (aaRSs) are multidomain proteins that specifically attach amino acids to their cognate tRNAs. Their most conserved, and presumably evolutionarily oldest, domains are the catalytic cores, which activate amino acids and transfer them to the 3' ends of tRNAs. Additional domains appended to or inserted in the body of aaRSs increase efficiency and specificity of the aminoa...
متن کاملSequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements.
The T box transcription termination control system is used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase and other amino acid-related genes. Readthrough of a transcriptional terminator located in the leader region of the target gene is dependent on a specific interaction between the nascent leader transcript and the cognate uncharged tRNA. This interaction is req...
متن کاملT box riboswitches in Actinobacteria: translational regulation via novel tRNA interactions.
The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5' untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gen...
متن کامل