Diastereoselective synthesis of 2,3,6-trisubstituted tetrahydropyran-4-ones via Prins cyclizations of enecarbamates: a formal synthesis of (+)-ratjadone A.

نویسندگان

  • Kimberly N Cossey
  • Raymond L Funk
چکیده

Enecarbamates are shown to be excellent terminating groups for Prins cyclizations. A noteworthy feature of this methodology is the easy, stereoselective construction of the cyclization precursors by alkylation of metalated (E)-enecarbamates with epoxides. The stereochemistry of the resultant trisubstituted (E)-enecarbamates is then transferred with high fidelity to afford the frequently observed and biologically significant all-cis-2,3,6-trisubstituted tetrahydropyran substructures of naturally occurring compounds. Other substituted tetrahydropyrans, including 2,3,5,6-tetrasubstituted, cis-2,3-disubstituted, and cis-2,6-disubstituted, are also accessible. This methodology facilitated an exceptionally concise formal total synthesis of the nuclear export inhibitor (+)-ratjadone A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silyl Enol Ether Prins Cyclization: Diastereoselective Formation of Substituted Tetrahydropyran-4-ones

A diastereoselective synthesis of cis-2,6-disubstituted tetrahydropyran-4-ones was developed. The key step of this methodology, a silyl enol ether Prins cyclization, was promoted by a condensation reaction between a hydroxy silyl enol ether and an aldehyde to afford substituted tetrahydropyran-4-ones. The cyclization was tolerant of many functional groups, and the modular synthesis of the hydro...

متن کامل

Efficient, highly diastereoselective MS 4 Å-promoted one-pot, three-component synthesis of 2,6-disubstituted-4-tosyloxytetrahydropyrans via Prins cyclization

A simple, efficient and highly diastereoselective one-pot three-component synthesis of functionalized 2,6-disubstituted-4-tosyloxytetrahydropyrans was performed. The synthesis features an optimized Prins cyclization in which an aromatic homoallylic alcohol, an aromatic/aliphatic aldehyde, and p-toluenesulfonic acid (catalyst and reagent) are reacted in the presence of molecular sieves (MS) 4 Å ...

متن کامل

A Convenient Base-Mediated Diastereoselective Synthesis of 2-Oxo-N,4,6-triarylcyclohex-3-enecarboxamides via Claisen-Schmidt Condensation

Sodium acetate catalyzed the multi-component reaction of acetophenone, aromatic aldehydes, and acetoacetanilide in the water-ethanol mixture (1:1) at ambient temperature via Claisen-Schmidt condensation results in the formation of highly substituted cyclohexenones in 89–98% yields. The developed efficient catalytic approach to the substituted cyclohexenones – the promising ...

متن کامل

Enantiospecific Intramolecular Heck Reactions of Secondary Benzylic Ethers

Enantioenriched methylenecyclopentanes are synthesized by stereospecific, nickel-catalyzed Heck cyclizations of secondary benzylic ethers. The reaction proceeds in high yield and enantiospecificity for benzylic ethers of both π-extended and simple arenes. Ethers with pendant 1,2-disubstituted olefins form trisubstituted olefins with control of both absolute configuration and alkene geometry. Di...

متن کامل

Natural Biopolymers is an Efficient Catalyst for the Synthesis of 1,3,5-Trisubstituted Pyrazoles

Cellulose sulfuric acid is an efficient metal-free catalyst for the synthesis of 1,3,5-trisubstituted pyrazoles via the condensation of 1,3-diketones and hydrazines. The reaction was carried out in Solvent-free condition at room temperature and the products were isolated in good to excellent yields. Mild reaction conditions, as well as ease of operation and workup are some advantages of the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 39  شماره 

صفحات  -

تاریخ انتشار 2004