Renormalization Group for Strongly Coupled Maps
نویسنده
چکیده
Systems of strongly coupled chaotic maps generically exhibit collective behavior emerging out of extensive chaos. We show how the well-known renormalization group (RG) of unimodal maps can be extended to the coupled systems, and in particular to coupled map lattices (CMLs) with local diffusive coupling. The RG relation derived for CMLs is nonperturbative, i.e., not restricted to a particular class of configurations nor to some vanishingly small region of parameter space. After defining the strong-coupling limit in which the RG applies to almost all asymptotic solutions, we first present the simple case of coupled tent maps. We then turn to the general case of unimodal maps coupled by diffusive coupling operators satisfying basic properties, extending the formal approach developed by Collet and Eckmann for single maps. We finally discuss and illustrate the general consequences of the RG: CMLs are shown to share universal properties in the space-continuous limit which emerges naturally as the group is iterated. We prove that the scaling properly ties of the local map carry to the coupled systems, with an additional scaling factor of length scales implied by the synchronous updating of these dynamical systems. This explains various scaling laws and self-similar features previously observed numerically.
منابع مشابه
Coupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کاملRenormalization Analysis of Intermittency in Two Coupled Maps
The critical behavior for intermittency is studied in two coupled one-dimensional (1D) maps. We find two fixed maps of an approximate renormalization operator in the space of coupled maps. Each fixed map has a common relavant eigenvalue associated with the scaling of the control parameter of the uncoupled one-dimensional map. However, the relevant “coupling eigenvalue” associated with coupling ...
متن کاملLocal renormalization group functions from quantum renormalization group and holographic bulk locality
The bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormaliza...
متن کاملRenormalization group approach to chaotic strings
Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, have a profound physical meaning in terms of dynamical models of vacuum fluctuations in stochastically quantized field theories. Here we present analytic results for the invariant density of chaotic strings, as well as for the coupling parameter dependence of given observables of the chaotic string such as the vac...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کامل