Nilpotent Primitive Linear Groups over Finite Fields

نویسنده

  • A. S. DETINKO
چکیده

In this paper we investigate the structure of groups as in the title. Our work builds on work of several other authors, namely Konyuh [5], Leedham-Green and Plesken [6], and Zalesskii [10], who have described the abstract isomorphism types of the groups. We obtain more detailed descriptions, in particular explaining how group structure depends on the existence of an abelian primitive subgroup. Additionally we show that isomorphism type of a group completely determines its conjugacy class in the relevant general linear group. A brief outline of the paper now follows. In Section 2 we review standard material on abelian (cyclic) irreducible linear groups. In Section 3 fundamental structural results are given. In Section 4 nilpotent primitive linear groups of degree 2 are classified up to conjugacy, and then groups of degree greater than 2 are treated thoroughly in Section 5. The final Section 6 summarises our results. Throughout, F is a finite field of size q and characteristic p , and G ≤ GL(n,F), n > 1. The natural (right) FG-module of dimension n is denoted V . Whenever we refer to “primitive” or “imprimitive” linear groups, we are implicitly assuming them to be irreducible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite group algebras of nilpotent groups: A complete set of orthogonal primitive idempotents

We provide an explicit construction for a complete set of orthogonal primitive idempotents of finite group algebras over nilpotent groups. Furthermore, we give a complete set of matrix units in each simple epimorphic image of a finite group algebra of a nilpotent group.

متن کامل

Rational Group Algebras of Finite Groups: from Idempotents to Units of Integral Group Rings

We give an explicit and character-free construction of a complete set of orthogonal primitive idempotents of a rational group algebra of a finite nilpotent group and a full description of the Wedderburn decomposition of such algebras. An immediate consequence is a well-known result of Roquette on the Schur indices of the simple components of group algebras of finite nilpotent groups. As an appl...

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

Nilpotent Orbits in Classical Lie Algebras over Finite Fields of Characteristic 2 and the Springer Correspondence

Let G be an adjoint algebraic group of type B, C, or D over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the Lie algebra of G. In particular, for orthogonal Lie algebras in characteristic 2, the structure of component groups of nilpotent centralizers is determined and the number of nilpotent orbits over finite fields is obtained.

متن کامل

Locally Nilpotent Linear Groups

This article examines aspects of the theory of locally nilpotent linear groups. We also present a new classification result for locally nilpotent linear groups over an arbitrary field F. 1. Why Locally Nilpotent Linear Groups? Linear (matrix) groups are a commonly used concrete representation of groups. The first investigations of linear groups were undertaken in the second half of the 19th cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004