Hierarchical Bayesian Inference in Networks of Spiking Neurons

نویسنده

  • Rajesh P. N. Rao
چکیده

There is growing evidence from psychophysical and neurophysiological studies that the brain utilizes Bayesian principles for inference and decision making. An important open question is how Bayesian inference for arbitrary graphical models can be implemented in networks of spiking neurons. In this paper, we show that recurrent networks of noisy integrate-and-fire neurons can perform approximate Bayesian inference for dynamic and hierarchical graphical models. The membrane potential dynamics of neurons is used to implement belief propagation in the log domain. The spiking probability of a neuron is shown to approximate the posterior probability of the preferred state encoded by the neuron, given past inputs. We illustrate the model using two examples: (1) a motion detection network in which the spiking probability of a direction-selective neuron becomes proportional to the posterior probability of motion in a preferred direction, and (2) a two-level hierarchical network that produces attentional effects similar to those observed in visual cortical areas V2 and V4. The hierarchical model offers a new Bayesian interpretation of attentional modulation in V2 and V4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Spiking Neurons II: Learning

In the companion letter in this issue ("Bayesian Spiking Neurons I: Inference"), we showed that the dynamics of spiking neurons can be interpreted as a form of Bayesian integration, accumulating evidence over time about events in the external world or the body. We proceed to develop a theory of Bayesian learning in spiking neural networks, where the neurons learn to recognize temporal dynamics ...

متن کامل

Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry ...

متن کامل

Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks

We propose a spiking network model capable of performing both approximate inference and learning for any hidden Markov model. The lower layer sensory neurons detect noisy measurements of hidden world states. The higher layer neurons with recurrent connections infer a posterior distribution over world states from spike trains generated by sensory neurons. We show how such a neuronal network with...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling

The goal of perception is to infer the hidden states in the hierarchical process by which sensory data are generated. Human behavior is consistent with the optimal statistical solution to this problem in many tasks, including cue combination and orientation detection. Understanding the neural mechanisms underlying this behavior is of particular importance, since probabilistic computations are n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004