Character Sheaves on Disconnected Groups, Viii

نویسنده

  • G. LUSZTIG
چکیده

In this paper we continue the study of character sheaves on a reductive group. To each subset of the set of simple reflections in the Weyl group we associate an algebra of the same kind as an Iwahori Hecke algebra with unequal parameters in terms of parabolic character sheaves. We also prove a Mackey type formula for character sheaves. We define a duality operation for character sheaves. We also prove a quasi-rationality property for character sheaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTER SHEAVES ON DISCONNECTED GROUPS , VIII 3 For any

Throughout this paper, G denotes a fixed, not necessarily connected, reductive algebraic group over an algebraically closed field k. This paper is a part of a series [L9] which attempts to develop a theory of character sheaves on G. In Section 36 we associate to any subset J of the set of simple reflections an algebra K over Q(v) (with v an indeterminate) defined using certain character sheaves...

متن کامل

Character Sheaves on Disconnected Groups, Vi

We define the character sheaves on a connected component of a reductive group and we show that the restriction functor takes a character sheaf to a direct sum of character sheaves.

متن کامل

Character Sheaves on Disconnected Groups, Iii

In this paper we define and study generalized Green functions for possibly disconnected groups.

متن کامل

Character Sheaves on Disconnected Groups, Ii

In this paper we establish the generalized Springer correspondence for possibly disconnected groups.

متن کامل

Generic Character Sheaves on Disconnected Groups and Character Values

We relate a generic character sheaf on a disconnected reductive group with a character of the rational points of the group over a finite field extending a known result in the connected case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006