Learning Coupled Prior Shape and Appearance Models for Segmentation
نویسندگان
چکیده
We present a novel framework for learning a joint shape and appearance model from a large set of un-labelled training examples in arbitrary positions and orientations. The shape and intensity spaces are unified by implicitly representing shapes as “images” in the space of distance transforms. A stochastic chord-based matching algorithm is developed to align photo-realistic training examples under a common reference frame. Then dense local deformation fields, represented using the cubic B-spline based Free Form Deformations (FFD), are recovered to register the training examples in both shape and intensity spaces. Principal Component Analysis (PCA) is applied on the FFD control lattices to capture the variations in shape as well as on registered object interior textures. We show examples where we have built coupled shape and appearance prior models for the left ventricle and whole heart in short-axis cardiac tagged MR images, and used them to delineate the heart chambers in noisy, cluttered images. We also show quantitative validation on the automatic segmentation results by comparing to expert solutions.
منابع مشابه
Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes
We present an integrated two-level approach to computationally analyzing image sequences of static scenes by variational segmentation. At the top level, estimated models of object appearance and background are probabilistically fused to obtain an a-posteriori probability for the occupancy of each pixel. The data-association strategy handles object occlusions explicitly. At the lower level, obje...
متن کاملCombining Shape Priors and MRF-Segmentation
Wepropose a combination of shape prior models with Markov Random Fields. The model allows to integrate multiple shape priors and appearance models into MRF-models for segmentation. We discuss a recognition task and introduce a general learning scheme. Both tasks are solved in the scope of the model and verified experimentally.
متن کاملPartitioned Shape Modeling with On-the-Fly Sparse Appearance Learning for Anterior Visual Pathway Segmentation
MRI quantification of cranial nerves such as anterior visual pathway (AVP) in MRI is challenging due to their thin small size, structural variation along its path, and adjacent anatomic structures. Segmentation of pathologically abnormal optic nerve (e.g. optic nerve glioma) poses additional challenges due to changes in its shape at unpredictable locations. In this work, we propose a partitione...
متن کاملA supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images
Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calc...
متن کاملAutomatic Liver Segmentation using Multiple Prior Knowledge Models and Free-Form Deformation
In this paper, an automatic and robust coarse-to-fine liver image segmentation method is proposed. Multiple prior knowledge models are built to implement liver localization and segmentation: voxel-based AdaBoost classifier is trained to localize liver position robustly, shape and appearance models are constructed to fit liver shape and appearance models to original CT images. Free-form deformat...
متن کامل