Abundance of stable ergodicity

نویسندگان

  • Christian Bonatti
  • Carlos Matheus
  • Marcelo Viana
  • Amie Wilkinson
چکیده

We consider the set PHω(M) of volume preserving partially hyperbolic diffeomorphisms on a compact manifold having 1-dimensional center bundle. We show that the volume measure is ergodic, and even Bernoulli, for any C2 diffeomorphism in an open and dense subset of PHω(M). This solves a conjecture of Pugh and Shub, in this setting. Mathematics Subject Classification (2000). 37D30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

About ergodicity in the family of limaçon billiards

By continuation from the hyperbolic limit of the cardioid billiard we show that there is an abundance of bifurcations in the family of limaçon billiards. The statistics of these bifurcation shows that the size of the stable intervals decreases with approximately the same rate as their number increases with the period. In particular, we give numerical evidence that arbitrarily close to the cardi...

متن کامل

Partial Hyperbolicity, Lyapunov Exponents and Stable Ergodicity

We present some results and open problems about stable ergodicity of partially hyperbolic diffeomorphisms with nonzero Lyapunov exponents. The main tool is local ergodicity theory for non-uniformly hyperbolic systems. Dedicated to the great dynamicists David Ruelle and Yakov Sinai on their 65th birthdays

متن کامل

Stable ergodicity of dominated systems

We provide a new approach to stable ergodicity of systems with dominated splittings, based on a geometrical analysis of global stable and unstable manifolds of hyperbolic points. Our method suggests that the lack of uniform size of Pesin’s local stable and unstable manifolds — a notorious problem in the theory of non-uniform hyperbolicity — is often less severe than it appeas to be.

متن کامل

Stable Ergodicity for Partially Hyperbolic Attractors with Negative Central Exponents

We establish stable ergodicity of diffeomorphisms with partially hyperbolic attractors whose Lyapunov exponents along the central direction are all negative with respect to invariant SRBmeasures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004