The Minimum Manhattan Network Problem: A Fast Factor-3 Approximation
نویسندگان
چکیده
Given a set of nodes in the plane and a constant t ≥ 1, a Euclidean t-spanner is a network in which, for any pair of nodes, the ratio of the network distance and the Euclidean distance of the two nodes is at most t. Such networks have applications in transportation or communication network design and have been studied extensively. In this paper we study 1-spanners under the Manhattan (or L1-) metric. Such networks are called Manhattan networks. A Manhattan network for a set of nodes can be seen as a set of axis-parallel line segments whose union contains a Manhattan path for each pair of nodes. It is not known whether it is NP-hard to compute minimum Manhattan networks (MMN), i.e. Manhattan networks of minimum total length. In this paper we present a factor-3 approximation algorithm for this problem. Given a set P of n nodes, our algorithm computes in O(n log n) time and linear space a Manhattan network for P whose length is at most 3 times the length of an MMN of P . We have implemented our algorithm and have done a thorough experimental analysis.
منابع مشابه
A Fast 2-Approximation Algorithm for the Minimum Manhattan Network Problem
Given a set T of n points in IR, a Manhattan Network G is a network with all its edges horizontal or vertical segments, such that for all p, q ∈ T , in G there exists a path (named a Manhattan path) of the length exactly the Manhattan distance between p and q. The Minimum Manhattan Network (MMN) problem is to find a Manhattan network of the minimum length, i.e., the total length of the segments...
متن کاملA Simple 3-Approximation of Minimum Manhattan Networks
Given a set P of n points in the plane, a Manhattan network of P is a network that contains a rectilinear shortest path between every pair of points of P . Aminimum Manhattan network of P is a Manhattan network of minimum total length. It is unknown whether it is NP-hard to construct a minimum Manhattan network. The best approximations published so far are a combinatorial 3-approximation algori...
متن کاملA Rounding Algorithm for Approximating Minimum Manhattan Networks
For a set T of n points (terminals) in the plane, a Manhattan network on T is a network N(T ) = (V,E) with the property that its edges are horizontal or vertical segments connecting points in V ⊇ T and for every pair of terminals, the network N(T ) contains a shortest l1-path between them. A minimum Manhattan network on T is a Manhattan network of minimum possible length. The problem of finding...
متن کاملA rounding algorithm for approximating minimum Manhattan networks1
For a set T of n points (terminals) in the plane, a Manhattan network on T is a network N(T ) = (V, E) with the property that its edges are horizontal or vertical segments connecting points in V ⊇ T and for every pair of terminals, the network N(T ) contains a shortest l1-path between them. A minimum Manhattan network on T is a Manhattan network of minimum possible length. The problem of findin...
متن کاملApproximating Minimum Manhattan Networks
Given a set S of n points in the plane, we deene a Manhattan Network on S as a rectilinear network G with the property that for every pair of points in S, the network G contains the shortest rectilinear path between them. A Minimum Manhattan Network on S is a Manhattan network of minimum possible length. A Manhattan network can be thought of as a graph G = (V; E), where the vertex set V corresp...
متن کامل