Experimental evaluation of a novel robotic hospital bed mover with omni-directional mobility.

نویسندگان

  • Zhao Guo
  • Rachael Bei Yee
  • Kyung-Ryoul Mun
  • Haoyong Yu
چکیده

Bed pushing during patient transfer is one of the most physically demanding and yet common tasks in the hospital setting. Powered bed movers have been increasingly introduced to hospitals to reduce physiological strains on the users. This study introduces and quantifies the manpower efficiency and health benefits of a novel robotic-assisted omni-directional hospital bed transporter (SESTO Bed Mover) in comparison with a conventional manual transport stretcher (Stryker Trauma Stretcher 1037) and a powered transport stretcher (HOSPIMEK HMPT 740), which has a fifth powered wheel providing power assistance only in the forward direction. A total of 14 subjects were recruited (7 porters and 7 students) and were tasked to complete a course within a controlled lab environment. It is concluded that the robotic bed mover is able to halve the required manpower to push hospital beds as compared to conventional bed pushing without any additional physiological strain, potentially improving efficiency by two-fold. Electromyography (EMG) patterns showed that users relied on the shoulder and back muscles in a fashion similar to conventional pushing, further confirming the intuitive drive of the robotic bed mover. Overall, the robotic bed mover shows reduced physical demands, less manpower required for patient transport and reduced back muscle activities, which strongly suggest health benefits for workers in the hospital.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots

This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances.  On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...

متن کامل

Investigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)

This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...

متن کامل

Dynamical Models for Omni-directional Robots with 3 and 4 Wheels

Omni-directional robots are becoming more and more common in recent robotic applications. They offer improved ease of maneuverability and effectiveness at the expense of increased complexity. Frequent applications include but are not limited to robotic competitions and service robotics. The goal of this work is to find a precise dynamical model in order to predict the robot behavior. Models wer...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

An Omnidirectional Mobile Millimeters Size Micro-Robot with Novel Duel-Wheels

A millimeters size omni-directional mobile micro-robot is presented in this paper. A unique duel-wheel structure is designed for no-slip motion during the steering, by turning the slip friction between the wheel and ground into rolling friction. The robot was driven by four electromagnetic micromotors with 2.1mm×2.1mm×1.3mm size. Three of them are for translation and the other one is for rotati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied ergonomics

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2017