Identification and characterization of an amino acid transporter expressed differentially in liver.
نویسندگان
چکیده
Cellular metabolic needs are fulfilled by transport of amino acids across the plasma membrane by means of specialized transporter proteins. Although many of the classical amino acid transporters have been characterized functionally, less than half of these proteins have been cloned. In this report, we identify and characterize a cDNA encoding a plasma membrane amino acid transporter. The deduced amino acid sequence is 505 residues and is highly hydrophobic with the likely predicted structure of 9 transmembrane domains, which putatively place the amino terminus in the cytoplasm and the carboxy terminus on the cell surface. Expression of the cRNA in Xenopus laevis oocytes revealed strong transport activities specific for histidine and glutamine. This protein is a Na(+)- and pH-dependent transporter and tolerates substitution of Na(+) by Li(+). Furthermore, this transporter is not an obligatory exchanger because efflux occurs in the absence of influx. This transporter is expressed predominantly in the liver, although it is also present in the kidney, brain, and heart. In the liver, it is located in the plasma membrane of hepatocytes, and the strongest expression was detected in those adjacent to the central vein, gradually decreasing towards the portal tract. Because this protein displays functional similarities to the N-system amino acid transport, we have termed it mNAT, for murine N-system amino acid transporter. This is the first transporter gene identified within the N-system, one of the major amino acid transport systems in the body. The expression pattern displayed by mNAT suggests a potential role in hepatocyte physiology.
منابع مشابه
Characterization of a mouse colonic system B(0+) amino acid transporter related to amino acid absorption in colon.
Previous experiments have shown that an amino acid transport system B(0+) transporter in cultured colonic epithelial cells mediates amino acid absorption. Here we describe the cloning and functional characterization of a system B(0+) transporter selectively expressed in the colon. Using the combination of an expressed sequence tag database search and RT-PCR approaches, we cloned a mouse colonic...
متن کاملCharacterization of a mouse colonic system B amino acid transporter related to amino acid absorption in colon
Ugawa, Shinya, Yoko Sunouchi, Takashi Ueda, Eri Takahashi, Yoshitsugu Saishin, and Shoichi Shimada. Characterization of a mouse colonic system B01 amino acid transporter related to amino acid absorption in colon. Am J Physiol Gastrointest Liver Physiol 281: G365–G370, 2001.—Previous experiments have shown that an amino acid transport system B01 transporter in cultured colonic epithelial cells m...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملMouse system-N amino acid transporter, mNAT3, expressed in hepatocytes and regulated by insulin-activated and phosphoinositide 3-kinase-dependent signalling.
Amino acid transporters are essential for normal cell function and physiology. In the present study, we report the identification and functional and regulatory characterization of a mouse system-N amino acid transporter, mNAT3. Expression of mNAT3 in Xenopus oocytes revealed that the strongest transport activities were preferred for L-alanine. In addition, mNAT3 is an Na(+)- and pH-dependent lo...
متن کاملIdentification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica
P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran. The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 7 شماره
صفحات -
تاریخ انتشار 2000