PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography
نویسندگان
چکیده
INTRODUCTION Lung protective ventilation requires low tidal volume and suitable positive end-expiratory pressure (PEEP). To date, few methods have been accepted for clinical use to set the appropriate PEEP. The aim of this study was to test the feasibility of PEEP titration guided by ventilation homogeneity using the global inhomogeneity (GI) index based on electrical impedance tomography (EIT) images. METHODS In a retrospective study, 10 anesthetized patients with healthy lungs mechanically ventilated under volume-controlled mode were investigated. Ventilation distribution was monitored by EIT. A standardized incremental PEEP trial (PEEP from 0 to 28 mbar, 2 mbar per step) was conducted. During the PEEP trial, "optimal" PEEP level for each patient was determined when the air was most homogeneously distributed in the lung, indicated by the lowest GI index value. Two published methods for setting PEEP were included for comparison based on the maximum global dynamic compliance and the intra-tidal compliance-volume curve. RESULTS No significant differences in the results were observed between the GI index method (12.2 +/- 4.6 mbar) and the dynamic compliance method (11.4 +/- 2.3 mbar, P > 0.6), or between the GI index and the compliance-volume curve method (12.2 +/- 4.9 mbar, P > 0.6). CONCLUSIONS According to the results, it is feasible and reasonable to use the GI index to select the PEEP level with respect to ventilation homogeneity. The GI index may provide new insights into the relationship between lung mechanics and tidal volume distribution and may be used to guide ventilator settings.
منابع مشابه
Ventilation inhomogeneity is one criterion among many in multidimensional PEEP titration
Amato [1] on our recent study [2], in which we proposed that ventilation inhomogeneity should be regarded as an additional prospective index along with blood gases, lung mechanics and hemodynamics in a multifactorial method to optimize positive end-expiratory pressure (PEEP) at the bedside. We agree with Costa and Amato that some ventilation heterogeneity may be good [1]. Especially in patients...
متن کاملEffect of body position on ventilation distribution during PEEP titration in a porcine model of acute lung injury using advanced respiratory monitoring and electrical impedance tomography
BACKGROUND Lung failure after acute lung injury remains a challenge in different clinical settings. Various interventions for restoration of gas exchange have been investigated. Recruitment of collapsed alveoli by positive end expiratory pressure (PEEP) titration and optimization of ventilation-perfusion ratio by prone positioning have been extensively described in animal and clinical trials. T...
متن کاملElectrical Impedance Tomography-guided PEEP Titration in Patients Undergoing Laparoscopic Abdominal Surgery
The aim of the study is to utilize electrical impedance tomography (EIT) to guide positive end-expiratory pressure (PEEP) and to optimize oxygenation in patients undergoing laparoscopic abdominal surgery.Fifty patients were randomly assigned to the control (C) group and the EIT (E) group (n = 25 each). We set the fraction of inspired oxygen (FiO2) at 0.30. The PEEP was titrated and increased in...
متن کاملPositive End-expiratory Pressure Titration after Alveolar Recruitment Directed by Electrical Impedance Tomography
BACKGROUND Electrical impedance tomography (EIT) is a real-time bedside monitoring tool, which can reflect dynamic regional lung ventilation. The aim of the present study was to monitor regional gas distribution in patients with acute respiratory distress syndrome (ARDS) during positive-end-expiratory pressure (PEEP) titration using EIT. METHODS Eighteen ARDS patients under mechanical ventila...
متن کاملElectrical impedance tomography to determine optimal positive end-expiratory pressure in severe chronic obstructive pulmonary disease
Dynamic hyperinflation (DH) is a consequence of severe airflow obstruction in patients with asthma and chronic obstructive pulmonary disease (COPD). Incorrect setting of positive end-expiratory pressure (PEEP) can lead either to unopposed intrinsic PEEP (iPEEP) (when set too low) or to an increase in lung volume if PEEP is set above iPEEP. DH and iPEEP can lead to haemodynamic compromise [1], i...
متن کامل