A ribosome-binding, 3' translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction.
نویسندگان
چکیده
Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that engages in a long-distance kissing-loop interaction with a coding sequence hairpin that is critical for the translation of a reporter construct and the accumulation of the viral genome in vivo. Loss of the long-distance interaction was more detrimental than elimination of the adjacent PTE, indicating that the RNA-RNA interaction supports additional translation functions besides relocating the PTE to the 5' end. The branched element is predicted by molecular modeling and molecular dynamics to form a T-shaped structure (TSS) similar to the ribosome-binding TSS of Turnip crinkle virus (TCV). The PEMV element binds to plant 80S ribosomes with a K(d) (dissociation constant) of 0.52 μM and to 60S subunits with a K(d) of 0.30 μM. Unlike the TCV TSS, the PEMV element also binds 40S subunits (K(d), 0.36 μM). Mutations in the element that suppressed translation reduced either ribosome binding or the RNA-RNA interaction, suggesting that ribosome binding is important for function. This novel, multifunctional element is designated a kl-TSS (kissing-loop T-shaped structure) to distinguish it from the TCV TSS. The kl-TSS has sequence and structural features conserved with the upper portion of most PTE-type elements, which, with the exception of the PEMV PTE, can engage in similar long-distance RNA-RNA interactions.
منابع مشابه
The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin.
The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the...
متن کاملThe 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits.
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5' cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5' ends with substantial IRES activity but instead have 3' translational e...
متن کاملThe 3' end of Turnip crinkle virus contains a highly interactive structure including a translational enhancer that is disrupted by binding to the RNA-dependent RNA polymerase.
Precise temporal control is needed for RNA viral genomes to translate sufficient replication-required products before clearing ribosomes and initiating replication. A 3' translational enhancer in Turnip crinkle virus (TCV) overlaps an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. The higher-order structure in the region was examined through alteration of critical seque...
متن کاملFolding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch
Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found t...
متن کاملConcerted action of two 3′ cap-independent translation enhancers increases the competitive strength of translated viral genomes
Several families of plant viruses evolved cap-independent translation enhancers (3'CITE) in the 3' untranslated regions of their genomic (g)RNAs to compete with ongoing cap-dependent translation of cellular mRNAs. Umbravirus Pea enation mosaic virus (PEMV)2 is the only example where three 3'CITEs enhance translation: the eIF4E-binding Panicum mosaic virus-like translational enhancer (PTE) and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 86 18 شماره
صفحات -
تاریخ انتشار 2012