Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.
نویسندگان
چکیده
Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method.
منابع مشابه
Adaptive non-local means denoising of MR images with spatially varying noise levels.
PURPOSE To adapt the so-called nonlocal means filter to deal with magnetic resonance (MR) images with spatially varying noise levels (for both Gaussian and Rician distributed noise). MATERIALS AND METHODS Most filtering techniques assume an equal noise distribution across the image. When this assumption is not met, the resulting filtering becomes suboptimal. This is the case of MR images with...
متن کاملAdaptive Magnetic Resonance Image Denoising Using Mixture Model and Wavelet Shrinkage
This paper proposes a new adaptive wavelet-based Magnetic Resonance images denoising algorithm. A Rician distribution for background-noise modelling is introduced and a Maximum-Likelihood method for the parameter estimation procedure is used. Further discrimination between edgeand noise-related coefficients is achieved by updating the shrinkage function along consecutive scales and applying spa...
متن کاملMaximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods.
In this paper, we propose a method to denoise magnitude magnetic resonance (MR) images, which are Rician distributed. Conventionally, maximum likelihood methods incorporate the Rice distribution to estimate the true, underlying signal from a local neighborhood within which the signal is assumed to be constant. However, if this assumption is not met, such filtering will lead to blurred edges and...
متن کاملGenetic Algorithm Based Non Local Maximum Likelihood Algorithm for Mri Denoising
In medical images, noise suppression is a delicate and difficult task. A trade off between noise reduction and the preservation of actual image features is a challenging task. Post acquisition denoising of magnetic resonance (MR) images is of importance for clinical diagnosis and computerized analysis, such as tissue classification and segmentation. It has been shown that the noise in MR magnit...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 30 10 شماره
صفحات -
تاریخ انتشار 2012