Functional analysis of the Shiga toxin and Shiga-like toxin type II variant binding subunits by using site-directed mutagenesis.
نویسندگان
چکیده
The B subunit of Shiga toxin and the Shiga-like toxins (SLTs) mediates receptor binding, cytotoxic specificity, and extracellular localization of the holotoxin. While the functional receptor for Shiga toxin, SLT type I (SLT-I), and SLT-II is the glycolipid designated Gb3, SLT-II variant (SLT-IIv) may use a different glycolipid receptor. To identify the domains responsible for receptor binding, localization in Escherichia coli, and recognition by neutralizing monoclonal antibodies, oligonucleotide-directed site-specific mutagenesis was used to alter amino acid residues in the B subunits of Shiga toxin and SLT-IIv. Mutagenesis of a well-conserved hydrophilic region near the amino terminus of the Shiga toxin B subunit rendered the molecule nontoxic but did not affect immunoreactivity or holotoxin assembly. In addition, elimination of one cysteine residue, as well as truncation of the B polypeptide by 5 amino acids, caused a total loss of activity. Changing a glutamate to a glutamine at the carboxyl terminus of the Shiga toxin B subunit resulted in the loss of receptor binding and immunoreactivity. However, the corresponding mutation in the SLT-IIv B subunit (glutamine to glutamate) did not reduce the levels of cytotoxicity but did affect extracellular localization of the holotoxin in E. coli.
منابع مشابه
Expression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies
Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...
متن کاملInvestigation of ribosome binding by the Shiga toxin A1 subunit, using competition and site-directed mutagenesis.
The enzymatic subunit of Shiga toxin (StxA1) is a member of the ribosome-inactivating protein (RIP) family, which includes the ricin A chain as well as other examples of plant toxins. StxA1 catalytically depurinates a well-conserved GAGA tetra-loop of 28S rRNA which lies in the acceptor site of eukaryotic ribosomes. The specific activities of native StxA1, as well as mutated forms of the enzyme...
متن کاملStructure and Function Relationship of the Autotransport and Proteolytic Activity of EspP from Shiga Toxin-Producing Escherichia coli
BACKGROUND The serine protease autotransporter EspP is a proposed virulence factor of Shiga toxin-producing Escherichia coli (STEC). We recently distinguished four EspP subtypes (EspPalpha, EspPbeta, EspPgamma, and EspPdelta), which display large differences in transport and proteolytic activities and differ widely concerning their distribution within the STEC population. The mechanisms underly...
متن کاملEffect of Shiga Toxin And Its Subunits On Cytokine Induction in Different Cell Lines
Shiga toxins (Stxs) are bacterial virulence factors produced by Shigella dysenteriae serotype 1 and Escherichia coli strains. Stxs are critical factors for the development of diseases such as severe bloody diarrhea and hemolytic uremic syndrome. Additionally, Stxs trigger the secretion of pro- inflammatory cytokines and chemokines, particularly in monocytes or macrophages. The inflammatory cyto...
متن کاملEvidence that glutamic acid 167 is an active-site residue of Shiga-like toxin I.
Escherichia coli Shiga-like toxin I, a close relative of Shiga toxin and a distant relative of the ricin family of plant toxins, inhibits eukaryotic protein synthesis by catalyzing the depurination of adenosine 4324 in 28S rRNA. By comparing the crystallographic structure of ricin with amino acids conserved between the Shiga and ricin toxin families, we identified seven potential active-site re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 172 2 شماره
صفحات -
تاریخ انتشار 1990