Chaos and Asymptotical Stability in Discrete-time Neural Networks
نویسندگان
چکیده
2 Abstract This paper aims to theoretically prove by applying Marotto’s Theorem that both transiently chaotic neural networks (TCNN) and discrete-time recurrent neural networks (DRNN) have chaotic structure. A significant property of TCNN and DRNN is that they have only one fixed point, when absolute values of the self-feedback connection weights in TCNN and the difference time in DRNN are sufficiently large. We show that this unique fixed point can actually evolve into a snap-back repeller which generates chaotic structure, if several conditions are satisfied. On the other hand, by using the Lyapunov functions, we also derive sufficient conditions on asymptotical stability for symmetrical versions of both TCNN and DRNN, under which TCNN and DRNN asymptotically converge to a fixed point. Furthermore, generic bifurcations are also considered in this paper. Since both of TCNN and DRNN are not special but simple and general, the obtained theoretical results hold for a wide class of discrete-time neural networks. To demonstrate the theoretical results of this paper better, several numerical simulations are provided as illustrating examples. KeywordsNeural network, Chaos, Snap back repeller, Simulated annealing, Asymptotical stability.This paper aims to theoretically prove by applying Marotto’s Theorem that both transiently chaotic neural networks (TCNN) and discrete-time recurrent neural networks (DRNN) have chaotic structure. A significant property of TCNN and DRNN is that they have only one fixed point, when absolute values of the self-feedback connection weights in TCNN and the difference time in DRNN are sufficiently large. We show that this unique fixed point can actually evolve into a snap-back repeller which generates chaotic structure, if several conditions are satisfied. On the other hand, by using the Lyapunov functions, we also derive sufficient conditions on asymptotical stability for symmetrical versions of both TCNN and DRNN, under which TCNN and DRNN asymptotically converge to a fixed point. Furthermore, generic bifurcations are also considered in this paper. Since both of TCNN and DRNN are not special but simple and general, the obtained theoretical results hold for a wide class of discrete-time neural networks. To demonstrate the theoretical results of this paper better, several numerical simulations are provided as illustrating examples. KeywordsNeural network, Chaos, Snap back repeller, Simulated annealing, Asymptotical stability.
منابع مشابه
FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملStability Criteria of Discrete-Time Analog Neural Networks - Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
I n this short paper, some globally asymptotical stability criteria for the equilibrium states of a class of discrete-time dynamic neural networks with continuous states and asymmetrical weight matrices are presented. The resulting stability criteria are represented by either the existence of the positive daagonal solutions of the Lyapunov equations or some inequalities. Finally, some examples ...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملExistence and stability analysis of discrete-time fuzzy BAM neural networks with delays and impulses
In this paper, the discrete-time fuzzy BAM neural network with delays and impulses is studied. Sufficient conditions are obtained for the existence and global stability of a unique equilibrium of this class of fuzzy BAM neural networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fi...
متن کامل