Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model.
نویسندگان
چکیده
Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell-autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration.
منابع مشابه
Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملPaeonol Protection Against Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson\'s Disease
Introduction: Parkinsonchr('39')s disease (PD) presentations comprise frequent movement disorders in the elderly with various symptoms consisting of motor and non-motor complications. Paeonol is a phenolic chemical agent that has shown antioxidant and anti-inflammatory effects in different disorders and promising effects on metabotropic glutamate receptors (mGluR)- and GABAA-mediated neurotrans...
متن کاملDJ-1 modulates aggregation and pathogenesis in models of Huntington's disease.
The oxidation-sensitive chaperone protein DJ-1 has been implicated in several human disorders including cancer and neurodegenerative diseases. During neurodegeneration associated with protein misfolding, such as that observed in Alzheimer's disease and Huntington's disease (HD), both oxidative stress and protein chaperones have been shown to modulate disease pathways. Therefore, we set out to i...
متن کاملAssessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer\'s Disease Model of Rats
Background: The most important cause of neurodegeneration in Alzheimer's disease (AD) is associated with inflammation and oxidative stress. Probiotics are microorganisms that are believed to be beneficial to human and animals. Probiotics reduce oxidative stress and inflammation in some cases. Therefore, this study determined the effects of probiotics mixture on the biomarkers of oxidative stres...
متن کاملThe Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration
Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER) stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 8 شماره
صفحات -
تاریخ انتشار 2011