Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments
نویسندگان
چکیده
Ecology Letters (2011) 14: 1025-1034 ABSTRACT: Evolutionary changes in natural populations are often so fast that the evolutionary dynamics may influence ecological population dynamics and vice versa. Here we construct an eco-evolutionary model for dispersal by combining a stochastic patch occupancy metapopulation model with a model for changes in the frequency of fast-dispersing individuals in local populations. We test the model using data on allelic variation in the gene phosphoglucose isomerase (Pgi), which is strongly associated with dispersal rate in the Glanville fritillary butterfly. Population-specific measures of immigration and extinction rates and the frequency of fast-dispersing individuals among the immigrants explained 40% of spatial variation in Pgi allele frequency among 97 local populations. The model clarifies the roles of founder events and gene flow in dispersal evolution and resolves a controversy in the literature about the consequences of habitat loss and fragmentation on the evolution of dispersal.
منابع مشابه
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Fin...
متن کاملImpacts of dispersal on rapid adaptation and dynamic stability of Daphnia in fluctuating environments.
Prior ecological research has shown that spatial processes can enhance the temporal stability of populations in fluctuating environments. Less explored is the effect of dispersal on rapid adaptation and its concomitant impact on population dynamics. For asexually reproducing populations, theory predicts that dispersal in fluctuating environments can facilitate asynchrony among clones and enhanc...
متن کاملRandom Dispersal vs Non-Local Dispersal
Random dispersal is essentially a local behavior which describes the movement of organisms between adjacent spatial locations. However, the movements and interactions of some organisms can occur between non-adjacent spatial locations. To address the question about which dispersal strategy can convey some competitive advantage, we consider a mathematical model consisting of one reaction-diffusio...
متن کاملEvolution of unconditional dispersal in periodic environments.
Organisms modulate their fitness in heterogeneous environments by dispersing. Prior work shows that there is selection against 'unconditional' dispersal in spatially heterogeneous environments. 'Unconditional' means individuals disperse at a rate independent of their location. We prove that if within-patch fitness varies spatially and between two values temporally, then there is selection for u...
متن کاملIntense or Spatially Heterogeneous Predation Can Select against Prey Dispersal
Dispersal theory generally predicts kin competition, inbreeding, and temporal variation in habitat quality should select for dispersal, whereas spatial variation in habitat quality should select against dispersal. The effect of predation on the evolution of dispersal is currently not well-known: because predation can be variable in both space and time, it is not clear whether or when predation ...
متن کامل