Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour
نویسندگان
چکیده
The exceptional properties of nanocrystalline materials lend themselves to a wide range of structural and functional applications. There is recent evidence to suggest that grain boundary impurities may have a dramatic effect on the stability, strength and ductility of nanocrystalline metals and alloys. In this study, transmission electron microscopy and atom probe tomography were used to characterize specimens deposited at different base pressures, thus providing a direct comparison of impurity content with microstructural stability and mechanical behaviour. Atom probe measurements provide clear experimental evidence of grain boundary segregation of oxygen in samples deposited at higher base pressures. It is proposed that these oxygen atoms pin the boundaries, preventing stressassisted grain growth and resulting in increased strength and loss in ductility. This study provides the first direct experimental evidence that boundary impurities play a critical role in determining the microstructural stability and deformation behaviour of nanocrystalline metals. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative ...
متن کاملThe Role of Confinement on Stress-Driven Grain Boundary Motion in Nanocrystalline Aluminum Thin Films
3D molecular dynamics simulations are performed to investigate the role of microstructural confinement on room temperature stress-driven grain boundary (GB) motion for a general population of GBs in nanocrystalline Al thin films. Detailed analysis and comparison with experimental results reveal how coupled GB migration and GB sliding are manifested in realistic nanoscale networks of GBs. The pr...
متن کاملSynthesis and thermal stability of nanocrystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying
Thermal stability and the kinetics of the grain growth of nano-crystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying (MA) were investigated. It started with elemental powders, using a variety of analytical techniques including differential scanning calorimetry (DSC), X-ray diffraction method (XRD), and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (E...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملINFLUENCE OF CARBON ON THE AGEING BEHAVIOUR OF TI-13V-11CR-3AL
The effect of aging time and temperature on the microstructure and mechanical properties of Ti-13V-11Cr-3Al and Ti-13V-11Cr-3Al-0.2C was studied. The carbon addition increases the rate of age hardening as well as the peak hardness of aged samples. The presence of titanium carbides in Ti-13V-11Cr-3Al-0.2C limits grain growth during the process. The observations in this work are discussed in ...
متن کامل