Atomistic simulations of low-field mobility in Si nanowires: Influence of confinement and orientation

نویسندگان

  • Neophytos Neophytou
  • Hans Kosina
چکیده

A simulation framework that couples atomistic electronic structures to Boltzmann transport formalism is developed and applied to calculate the transport characteristics of thin silicon nanowires (NWs) up to 12 nm in diameter. The sp3d5s∗-spin-orbit-coupled atomistic tight-binding model is used for the electronic structure calculation. Linearized Boltzmann transport theory is applied, including carrier scattering by phonons, surface roughness (SRS), and impurities. We present a comprehensive investigation of the low-field mobility in silicon NWs considering i) nand p-type NWs, ii) [100], [110], and [111] transport orientations, and iii) diameters from D = 12 nm (electronically almost bulk-like) down to D = 3 nm (ultra-scaled). The simulation results display strong variations in the characteristics of the different NW types. For n-type NWs, phonon scattering and SRS become stronger as the diameter is reduced and drastically degrade the mobility by up to an order of magnitude depending on the orientation. For the [111] and [110] p-type NWs, on the other hand, large mobility enhancements (on the order of ∼4×) can be achieved as the diameter scales down to D = 3 nm. This enhancement originates from the increase in the subband curvatures as the diameter is scaled. It overcompensates for the mobility reduction caused by SRS in narrow NWs and offers an advantage with diameter scaling. Our results may provide understanding of recent experimental measurements, as well as guidance in the design of NW channel devices with improved transport properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confinement-Induced Mobility Increase in p-type [110] and [111] Silicon Nanowires

1. Abstract The spds-spin-orbit-coupled (SO) atomistic tightbinding (TB) model is coupled to Boltzmann transport formalism for calculation of the low-field mobility in Si nanowires (NWs). We show that the phonon limited mobility of p-type NWs in the [110] and [111] transport orientations largely increases by more than 7X as the diameter is scaled from D=12nm down to D=3nm. This effect is attrib...

متن کامل

Full-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and ...

متن کامل

Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, κl . This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in κl , further improvements in the TE figure of merit ZT could potentially originate from the thermoelectr...

متن کامل

Strong Surface Orientation Dependent Thermal Transport in Si Nanowires

Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobil...

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011