Linear Multilayer Ica Algorithm Integrating Small Local Modules

نویسندگان

  • Yoshitatsu Matsuda
  • Kazunori Yamaguchi
چکیده

In this paper, the linear (feed-forward) multilayer ICA algorithm is proposed for the blind separation of high-dimensional mixed signals. There are two main phases in each layer. One is the local ICA phase, where the mixed signals are divided into small local modules and a simple ICA is applied to each module. Another is the mapping phase, where the locally-separated signals are arranged as a line so that the higher correlated signals are nearer. By repetition of these two phase, this multilayer ICA algorithm can find all the (global) independent components through only the ICA processing on local modules. Some numerical experiments on artificial data and natural scenes show the validity of this algorithm, and verify that it is more efficient than the standard fast ICA algorithm for “locally-biased” and highdimensional observed signals such as natural scenes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Multilayer Independent Component Analysis for Large Natural Scenes

In this paper, linear multilayer ICA (LMICA) is proposed for extracting independent components from quite high-dimensional observed signals such as large-size natural scenes. There are two phases in each layer of LMICA. One is the mapping phase, where a one-dimensional mapping is formed by a stochastic gradient algorithm which makes more highlycorrelated (non-independent) signals be nearer incr...

متن کامل

An Improved Imperialist Competitive Algorithm based on a new assimilation strategy

Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

Application of ANN-ICA Hybrid Algorithm toward Prediction of Engine Power and Exhaust Emissions

Artificial neural network was considered in previous studies for prediction of engine performance and emissions. ICA methodology was inspired in order to optimize the weights of multilayer perceptron (MLP) of artificial neural network so that closer estimation of output results can be achieved. Current paper aimed at prediction of engine power, soot, NOx, CO2, O2, and temperature with the ai...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003