The negative cell cycle regulators, p27Kip1, p18Ink4c, and GSK-3, play critical role in maintaining quiescence of adult human pancreatic β-cells and restrict their ability to proliferate
نویسندگان
چکیده
Adult human pancreatic β-cells are primarily quiescent (G0) yet the mechanisms controlling their quiescence are poorly understood. Here, we demonstrate, by immunofluorescence and confocal microscopy, abundant levels of the critical negative cell cycle regulators, p27(Kip1) and p18(Ink4c), 2 key members of cyclin-dependent kinase (CDK) inhibitor family, and glycogen synthase kinase-3 (GSK-3), a serine-threonine protein kinase, in islet β-cells of adult human pancreatic tissue. Our data show that p27(Kip1) localizes primarily in β-cell nuclei, whereas, p18(Ink4c) is mostly present in β-cell cytosol. Additionally, p-p27(S10), a phosphorylated form of p27(Kip1), which was shown to interact with and to sequester cyclinD-CDK4/6 in the cytoplasm, is present in substantial amounts in β-cell cytosol. Our immunofluorescence analysis displays similar distribution pattern of p27(Kip1), p-p27(S10), p18(Ink4c) and GSK-3 in islet β-cells of adult mouse pancreatic tissue. We demonstrate marked interaction of p27(Kip1) with cyclin D3, an abundant D-type cyclin in adult human islets, and vice versa as well as with its cognate kinase partners, CDK4 and CDK6. Likewise, we show marked interaction of p18(Ink4c) with CDK4. The data collectively suggest that inhibition of CDK function by p27(Kip1) and p18(Ink4c) contributes to human β-cell quiescence. Consistent with this, we have found by BrdU incorporation assay that combined treatments of small molecule GSK-3 inhibitor and mitogen/s lead to elevated proliferation of human β-cells, which is caused partly due to p27(Kip1) downregulation. The results altogether suggest that ex vivo expansion of human β-cells is achievable via increased proliferation for β-cell replacement therapy in diabetes.
منابع مشابه
Cell cycle regulation during mouse olfactory neurogenesis.
The development of the nervous system requires a strict control of cell cycle entry and withdrawal. The olfactory epithelium (OE) is noticeable by its ability to yield new neurons not only during development but also continuously during adulthood. The aim of our study was to investigate, by biochemical and immunohistochemical methods, which cell cycle regulators are involved in the control of n...
متن کاملmiR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting
Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...
متن کاملEffect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملRegulation of T Cell Differentiation and Alloimmunity by the Cyclin-Dependent Kinase Inhibitor p18ink4c
Cellular proliferation in response to mitogenic stimuli is negatively regulated by the Cip/Kip and the Ink4 families of cyclin-dependent kinase (CDK) inhibitors. Several of these proteins are elevated in anergic T cells, suggesting a potential role in the induction or maintenance of tolerance. Our previous studies showed that p27kip1 is required for the induction of T cell anergy and transplant...
متن کاملAltered expression of cell cycle regulators in adult T-cell leukemia/lymphoma patients
Abstract Background: Adult T-cell leukemia/lymphoma (ATLL) is caused by human T-cell lymphotropic virus type-1 (HTLV-1). HTLV-1 oncogenes can induce malignancy through controlled gene expression of cell cycle checkpoints in the host cell. HTLV-I genes play a pivotal role in overriding cell cycle checkpoints and deregulate cellular division. In this study, we aimed to determine and comp...
متن کامل