Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.

نویسندگان

  • Peggy Janich
  • Alaaddin Bulak Arpat
  • Violeta Castelo-Szekely
  • Maykel Lopes
  • David Gatfield
چکیده

Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational Profiling of Clock Cells Reveals Circadianly Synchronized Protein Synthesis

Genome-wide studies of circadian transcription or mRNA translation have been hindered by the presence of heterogeneous cell populations in complex tissues such as the nervous system. We describe here the use of a Drosophila cell-specific translational profiling approach to document the rhythmic "translatome" of neural clock cells for the first time in any organism. Unexpectedly, translation of ...

متن کامل

Analyzing the temporal regulation of translation efficiency in mouse liver.

Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013) [1]). We have recently reported on the use of ribo...

متن کامل

Translation inhibitors cause abnormalities in ribosome profiling experiments

Ribosome profiling and high-throughput sequencing provide unprecedented opportunities for the analysis of mRNA translation. Using this novel method, several studies have demonstrated the widespread role of short upstream reading frames in translational control as well as slower elongation at the beginning of open reading frames in response to stress. Based on the initial studies, the importance...

متن کامل

Starting too soon: upstream reading frames repress downstream translation.

Upstream open reading frames (uORFs) are known to regulate a few specific transcripts, and recent computational and experimental studies have suggested candidate uORF regulation across the genome. In this issue, Johnstone et al (2016) use ribosome profiling to identify translated uORFs and measure their effects on downstream translation. Furthermore, they show that regulatory uORFs are conserve...

متن کامل

Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli

Heat shock response is a classical stress-induced regulatory system in bacteria, characterized by extensive transcriptional reprogramming. To compare the impact of heat stress on the transcriptome and translatome in Escherichia coli, we conducted ribosome profiling in parallel with RNA-Seq to investigate the alterations in transcription and translation efficiency when E. coli cells were exposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2015