Evolutionary Design of Trace Form Bent Functions

نویسندگان

  • Min Yang
  • Qingshu Meng
  • Huanguo Zhang
چکیده

In order to design bent functions, evolutionary algorithm based on truth table, algebraic normal form or Walsh spectra are already known. Evolutionary algorithm based on trace function form is not known to authors’ knowledge. In this paper, we give an evolutionary algorithm based on the trace representation of boolean function. With the algorithm, we constructed many bent functions and made some analysis work. First we observe that all 4 affinely inequivalent bent classes in 6-variable can be written as the linear sum of 2 or 3 monomial trace functions. We make a conclusion that affine transform can be used to change the linear span. We use the conclusion to change the trace form of obtained bent functions; Second, we find that some exponents take more chances to construct bent functions while some exponents take less. By this observation, we give each exponent a cost function, which make our algorithm more efficient than exhaustive searching algorithm or random algorithm. This is also the advantage over the algorithms based on the algebraic normal form, truth table, or Walsh spectra because we don’t know what kinds of algebraic normal form, truth table, Walsh spectra are more possible to be used to construct bent functions; Third, we classify the obtained bent functions into affinely inequivalent classes and the number of classes is reported. keyword evolutionary algorithm, trace function, bent functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On multiple output bent functions

a r t i c l e i n f o a b s t r a c t Keywords: Cryptography Boolean functions Bent functions Multiple output Monomial trace functions In this article we investigate the possibilities of obtaining multiple output bent functions from certain power polynomials over finite fields. So far multiple output bent functions F : GF(2) n → GF(2) m (where n is even and m n/2), for any particular class of B...

متن کامل

On the Primary Constructions of Vectorial Boolean Bent Functions∗

Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: ve...

متن کامل

More PS and H-like bent functions

Two general classes (constructions) of bent functions are derived from the notion of spread. The first class, PS, gives a useful framework for designing bent functions which are constant (except maybe at 0) on each of the m-dimensional subspaces of F22m belonging to a partial spread. Explicit expressions (which may be used for applications) of bent functions by means of the trace can be derived...

متن کامل

Some Results on Bent-Negabent Boolean Functions over Finite Fields

We consider negabent Boolean functions that have Trace representation. We completely characterize quadratic negabent monomial functions. We show the relation between negabent functions and bent functions via a quadratic function. Using this characterization, we give infinite classes of bent-negabent Boolean functions over the finite field F2n , with the maximum possible degree, n 2 . These are ...

متن کامل

A Note on Semi-bent Boolean Functions

We show how to construct semi-bent Boolean functions from PSaplike bent functions. We derive infinite classes of semi-bent functions in even dimension having multiple trace terms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005