Cu2O photoelectrodes for solar water splitting : tuning photoelectrochemical performance by controlled faceting

نویسندگان

  • Quan-Bao Ma
  • Jan P. Hofmann
  • Anton Litke
  • Emiel J.M. Hensen
چکیده

Cuprous oxide (Cu2O) films were grown by electrodeposition in aqueous solutions of varying pH. The effect of bath pH on morphology, structural, and photoelectrochemical (PEC) properties of Cu2O films was investigated. XRD showed that all prepared films were polycrystalline Cu2O, without formation of competing phases such as CuO and Cu. The film grown in the solution with a pH of 8 is made up of Cu2O crystallites with preferential (200) planes exposed. The films deposited at solution pH values of 10, 12 and 14 exhibit Cu2O crystallites with preferential (111) planes exposed. As photoelectrodes these Cu2O films generate photocurrent upon light illumination. The Cu2O film grown in the solution with pH of 12 shows the best PEC performance for hydrogen generation. The (111) facets of the Cu2O film were stable without corrosion during the PEC test. A mechanism for the preferred faceting in alkaline solution has been discussed. & 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersonic aerosol-deposited TiO2 photoelectrodes for photoelectrochemical solar water splitting

Photoelectrochemical (PEC) water-splitting is a promising approach for economical and environmentally friendly hydrogen production. We report here the preparation of nanocrystalline TiO2 films by aerosol deposition (AD) and their performance as photoelectrodes for PEC water splitting. The AD deposited films, 0.5 to 4 mm in thickness, were analyzed to establish the dependence of water splitting ...

متن کامل

Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on C...

متن کامل

Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids

Combination of an oxide semiconductor with a highly conductive nanocarbon framework (such as graphene or carbon nanotubes) is an attractive avenue to assemble efficient photoelectrodes for solar fuel generation. To fully exploit the possible synergies of the hybrid formation, however, precise knowledge of these systems is required to allow rational design and morphological engineering. In this ...

متن کامل

Modeling , simulation , and design criteria for photoelectrochemical water - splitting systems †

A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and quantification of performance. The mod...

متن کامل

Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017