Complexity management methodology for fuzzy systems with feedback rule bases

نویسندگان

  • Alexander E. Gegov
  • David A. Sanders
  • Boriana Vatchova
چکیده

This paper proposes a complexity management methodology for fuzzy systems with feedback rule bases. The methodology is based on formal methods for presentation, manipulation and transformation of fuzzy rule bases. First, Boolean matrices are used for formal presentation of rule bases. Then, binary merging operations are used for formal manipulation of rule bases. Finally, repetitive merging operations are used for formal transformation of rule bases. The formal methods facilitate the understanding and modelling of fuzzy systems in terms of interacting subsystems. In particular, the methods reduce the qualitative complexity in fuzzy systems by improving the transparency of the rule bases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Rule Generation Methods for Fuzzy Controller

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...

متن کامل

Designing Highly Interpretable Fuzzy Rule-Based Systems with Integration of Expert and Induced Knowledge

This work describes a new methodology for fuzzy system modeling focused on maximizing the interpretability while keeping high accuracy. In order to get a good interpretability-accuracy trade-off, it considers the combination of both expert knowledge and knowledge extracted from data. Both types of knowledge are represented using the fuzzy logic formalism, in the form of linguistic variables and...

متن کامل

A new methodology to learn descriptive linguistic Fuzzy Rule-based System Knowledge Bases from examples based on the combination of fuzzy clustering and evolutionary simultaneous rule selection and membership functions

A new methodology to learn descriptive linguistic Fuzzy Rule-based System Knowledge Bases from examples based on the combination of fuzzy clustering and evolutionary simultaneous rule selection and membership functions tuning is presented in this work. Fuzzy clustering is used to achieve a preliminary description of the data, in other words to obtain information on the definition of the linguis...

متن کامل

OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE

In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...

متن کامل

Fuzzy Complexity Analysis with Conflict Resolution for Educational Projects

Evaluative and comparative analysis among educational projects remains an issue for administration, program directors, instructors, and educational institutes. This study reports a fuzzy complexity model for educational projects, which has two primary aspects (technical aspects and transparency aspects). These aspects may not be measured precisely due to uncertain situations. Therefore, a fuzzy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014