Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3.
نویسندگان
چکیده
Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage.
منابع مشابه
Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin
Current opinion holds that pigment cells, melanocytes, are derived from neural crest cells produced at the dorsal neural tube and that migrate under the epidermis to populate all parts of the skin. Here, we identify growing nerves projecting throughout the body as a stem/progenitor niche containing Schwann cell precursors (SCPs) from which large numbers of skin melanocytes originate. SCPs arise...
متن کاملNeural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.
Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate ...
متن کاملAngiogenesis, Metastasis, and the Cellular Microenvironment FOXD3 Regulates Migration Properties and Rnd3 Expression in Melanoma Cells
Forkhead transcription factor, Foxd3, plays a critical role during development by controlling the lineage specification of neural crest cells. Notably, Foxd3 is highly expressed during the wave of neural crest cell migration that forms peripheral neurons and glial cells but is downregulated prior to migration of cells that give rise to the melanocytic lineage. Melanoma is the deadliest form of ...
متن کاملRequirement for Foxd3 in the maintenance of neural crest progenitors.
Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report ...
متن کاملFOXD3 regulates migration properties and Rnd3 expression in melanoma cells.
Forkhead transcription factor, Foxd3, plays a critical role during development by controlling the lineage specification of neural crest cells. Notably, Foxd3 is highly expressed during the wave of neural crest cell migration that forms peripheral neurons and glial cells but is downregulated prior to migration of cells that give rise to the melanocytic lineage. Melanoma is the deadliest form of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 31 شماره
صفحات -
تاریخ انتشار 2013