GENETICS OF IMMUNITY Nonsynonymous Substitution Rate Heterogeneity in the Peptide-Binding Region Among Different HLA-DRB1 Lineages in Humans
نویسندگان
چکیده
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution.
منابع مشابه
Nonsynonymous Substitution Rate Heterogeneity in the Peptide-Binding Region Among Different HLA-DRB1 Lineages in Humans
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR...
متن کاملIn silico identification of epitopes from house cat and dog proteins as peptide immunotherapy candidates based on human leukocyte antigen binding affinity
The objective of this descriptive study was to determine Felis domesticus (cat) and Canis familiaris (dog) protein epitopes that bind strongly to selected HLA class II alleles to identify synthetic vaccine candidate epitopes and to identify individuals/populations who are likely to respond to vaccines. FASTA amino acid sequences of experimentally validated allergenic proteins of house cat and d...
متن کاملA limit to the divergent allele advantage model supported by variable pathogen recognition across HLA‐DRB1 allele lineages
Genetic diversity in human leukocyte antigen (HLA) molecules is thought to have arisen from the co-evolution between host and pathogen and maintained by balancing selection. Heterozygote advantage is a common proposed scenario for maintaining high levels of diversity in HLA genes, and extending from this, the divergent allele advantage (DAA) model suggests that individuals with more divergent H...
متن کاملHLA-A*26 and Susceptibility of Iranian Patients with Non-Hodgkin Lymphoma
Background: Non-Hodgkin lymphoma (NHL) includes a wide range of diseases with different clinical and biological features. NHL is usually presented as localized or generalized lymphadenopathy. It has been suggested that the HLA class I and II are associated with susceptibility to NHL. Different ethnic groups have been found to have different HLA class I and II alleles which affect NHL. Objective...
متن کاملPolymorphism and balancing selection at major histocompatibility complex loci.
Amino acid replacements in the peptide-binding region (PBR) of the functional major histocompatibility complex (Mhc) genes appear to be driven by balancing selection. Of the various types of balancing selection, we have examined a model equivalent to overdominance that confers heterozygote advantage. As discussed by A. Robertson, overdominance selection tends to maintain alleles that have more ...
متن کامل