Coupled matrix Riccati equations in minimal cost variance control problems
نویسندگان
چکیده
We present an algorithm for the solution of a nontrivial coupled system of algebraic Riccati equations appearing in risk sensitive control problems. Moreover we use comparison methods to derive non blow up conditions for the solutions of a corresponding terminal value problem for coupled systems of Riccati di erential equations.
منابع مشابه
Infinite-Time Minimal Cost Variance Control and Coupled Algebraic Riccati Equations
Minimum cost variance control (MCV) optimizes the variance of the cost function while the cost mean is kept at a prespecified level. The solutions of the infinite time horizon full-state-feedback MCV problem are found using the Hamilton-Jacobi theory. In the solutions of infinite time horizon MCV control problem, a pair of coupled algebraic Riccati equations arises. This paper considers the exi...
متن کاملThe B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations
In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...
متن کاملExistence of Solutions of a Riccati Differential System from a General Cumulant Control Problem
We study a system of infinitely many Riccati equations that arise from a cumulant control problem, which is a generalization of regulator problems, risk-sensitive controls, minimal cost variance controls, and k-cumulant controls. We obtain estimates for the existence intervals of solutions of the system. In particular, new existence conditions are derived for solutions on the horizon of the cum...
متن کاملMaximal and Stabilizing Hermitian Solutions for Discrete-Time Coupled Algebraic Riccati Equations
Discrete-time coupled algebraic Riccati equations that arise in quadratic optimal control and -control of Markovian jump linear systems are considered. First, the L_ equations that arise from the quadratic optimal control problem are studied. The matrix cost is only assumed to be hermitian. Conditions for existence of the maximal hermitian solution are derived in terms of the concept of mean sq...
متن کاملPerturbation Analysis of Coupled Matrix Riccati Equations
Local and non local perturbation bounds for real continuous time coupled algebraic matrix Riccati equations are deriv ed using the technique of Ly apunov majorants and xed point principles Equations of this type arise in the robust analysis and design of linear control systems
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Automat. Contr.
دوره 44 شماره
صفحات -
تاریخ انتشار 1999