Comparison of neurite growth in three dimensional natural and synthetic hydrogels.
نویسندگان
چکیده
Extracellular matrix incorporated within a scaffold plays an important role in assisting cell behavior in neural tissue engineering. In this study, we investigated how the concentration of fibronectin (FN) affected neurite growth when incorporated within a synthetic polymer gel made of poly(ethylene glycol) (PEG) or a natural polymer gel of collagen I. Mechanical and chemical properties of the scaffold were varied by using a range of concentrations of gels and FN. Rheology was used to determine the mechanical stiffness of hydrogels and neurite length and viability were measured to evaluate cell response. In both types of gels, increasing the concentration of the base scaffold (PEG or collagen) increased the mechanical stiffness as denoted by G∗. Neurite lengths in PEG gels increased with increasing FN concentration and decreased with increasing G∗. In collagen gels, FN reduced neurite extension for the lowest concentrations of collagen (0.4-0.6 mg/mL) while FN increased neurite extension for mid and high collagen concentrations (1.0-2.0 mg/mL). The results from these two different scaffolds indicate that both stiffness and FN concentration impact the growth of the neurite and that the addition of small amounts of FN (100 μg/ml) permits PEG gels to perform on par with similar stiffness collagen gels.
منابع مشابه
Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth.
The design of bioactive materials allows tailored studies probing cell-biomaterial interactions, however, relatively few studies have examined the effects of ligand density and material stiffness on neurite growth in three-dimensions. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters withi...
متن کاملEffects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels
Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve ...
متن کاملSwelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth.
Soft alginate hydrogels support robust neurite outgrowth, but their rapid disintegration in solutions of high ionic strength restricts them from long-term in vivo applications. Aiming to enhance the mechanical stability of soft alginate hydrogels, we investigated how changes in pH and ionic strength during gelation influence the swelling, stiffness, and disintegration of a three-dimensional (3D...
متن کاملSelenium nanoparticles inclusion into chitosan hydrogels act as a chemical inducer for differentiation of PC12 cells into neuronal cells
Background and Objective: Biomaterials and nanomaterials have generated a great opportunity in regenerative medicine. Neurological disorders can result in permanent and severe derangement in motor and sensory functions. This study was conducted to examine the effects of selenium nanoparticles (Se NPs) as a chemical inducer for differentiation of PC12 cells into sympathetic-like neurons characte...
متن کاملImproving the Growth Rate of Human Adipose-Derived Mesenchymal Stem Cells in Alginate/Gelatin Versus Alginate Hydrogels
Background: Expansion and differentiation of stem cells relies on the soluble materials as well as the physical conditions of their microenvironment. Several methods have been studied in attempt to enhance the growth and differentiation rates of different adult stem cells extracted from different sources. Objectives: The purpose was to improve the three-dimensional (3D) culture condition of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomaterials science. Polymer edition
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2013