Incorporating response variability and estimation uncertainty into Pareto front optimization
نویسندگان
چکیده
Pareto front optimization has been commonly used for balancing trade-offs between different estimated responses. Using maximum likelihood or least squares point estimates or the worst case confidence bound values of the response surface, it is straightforward to find preferred locations in the input factor space that simultaneously perform well for the various responses. A new approach is proposed that directly incorporates model parameter estimation uncertainty into the Pareto front optimization. This step-by-step approach provides more realistic information about variability in the estimated Pareto front and how it affects our decisions about the potential best input factor locations. The method is illustrated with a manufacturing example involving three responses and two input factors. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Multi-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM
In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...
متن کاملDesign the bi-objective pharmaceutical supply chain network under uncertainty and considering the production, delivery, and drug perishable times
In this paper, a bi-objective pharmaceutical supply chain network under uncertainty demand and transportation costs is modeled and developed. To control the uncertainty parameters, the robust optimization method is considering. The main objective of this paper determines the number and location of potential facilities such as drug manufacture centers and drug distribution centers by considering...
متن کاملQuantifying uncertainty on Pareto fronts with Gaussian process conditional simulations
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill...
متن کاملA New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems
Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...
متن کاملUncertainty in fundamental natural frequency estimation for alluvial deposits
Seismic waves are filtered as they pass through soil layers, from bedrock to surface. Frequencies and amplitudes of the response wave are affected due to this filtration effect and this will result in different ground motion characteristics. Therefore, it is important to consider the impact of the soil properties on the evaluation of earthquake ground motions for the design of structures. Soil ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Industrial Engineering
دوره 76 شماره
صفحات -
تاریخ انتشار 2014