Mass spectrometric study of low-pressure inductively coupled plasma for chemical vapor deposition of cubic boron nitride films
نویسندگان
چکیده
Chemical species in plasma are crucial for understanding the mechanism of cubic boron nitride film vapor phase deposition and controlling the film structure. In this study, the plasma condition for cubic boron nitride deposition by low-pressure inductively coupled plasmaenhanced chemical vapor deposition using B2H6, N2, and Ar as reactant gases has been diagnosed by a quadrupole mass spectrometer with an ion energy analyzer. The ionization potentials of BXHY (X 1⁄4 1–2, Y 1⁄4 0–6) decomposed from B2H6 have been measured to be between 11.6 and 18.9 eV. B2H6 was totally ionized to B þ together with small amounts of BHþ, BH2 þ and B2HY þ in plasma above the 2 kW input power. N2 was only partially ionized, and the degree of ionization increased with increasing Ar partial pressure. Neutral species under the present plasma environment were N2, Ar and He, but N and H were not detected even by appearance mass spectrometry. Our results demonstrate that the main sources for cubic boron nitride formation are ions produced in plasma. The interaction between N2 and the growth surface suppresses the cubic boron nitride formation by enhancing the tBN growth, and this surface interference can be reduced by introducing Ar into the system. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler
Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...
متن کاملPulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization
This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA)...
متن کاملFacile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity
The Atmospheric Pressure Chemical Vapor Synthesis (APCVS) route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the am...
متن کاملA Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition
In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...
متن کاملComposition, oxidation, and optical properties of fluorinated silicon nitride film by inductively coupled plasma enhanced chemical vapor deposition
Amorphous fluorinated silicon nitride films have been deposited with the variation of NF3 flow rate using SiH4, N2, Ar, and NF3 gases by inductively coupled plasma enhanced chemical vapor deposition for the first time, and the absolute composition, oxidation mechanism, and optical properties were investigated. The absolute composition including hydrogen was performed by means of elastic recoil ...
متن کامل