Extreme Value GARCH modelling with Bayesian Inference
نویسندگان
چکیده
Extreme value theory is widely used financial applications such as risk analysis, forecasting and pricing models. One of the major difficulties in the applications to finance and economics is that the assumption of independence of time series observations is generally not satisfied, so that the dependent extremes may not necessarily be in the domain of attraction of the classical generalised extreme value distribution. This study examines a conditional extreme value distribution with the added specification that the extreme values (maxima or minima) follows a conditional autoregressive heteroscedasticity process. The dependence has been modelled by allowing the location and scale parameters of the extreme distribution to vary with time. The resulting combined model, GEV-GARCH, is developed by implementing the GARCH volatility mechanism in these extreme value model parameters. Bayesian inference is used for the estimation of parameters and posterior inference is available through the Markov Chain Monte Carlo (MCMC) method. The model is firstly applied to relevant simulated data to verify model stability and reliability of the parameter estimation method. Then real stock returns are used to consider evidence for the appropriate application of the model. A comparison is made between the GEV-GARCH and traditional GARCH models. Both the GEV-GARCH and GARCH show similarity in the resulting conditional volatility estimates, however the GEV-GARCH model differs from GARCH in that it can capture and explain extreme quantiles better than the GARCH model because of more reliable extrapolation of the tail behaviour. JEL Classifications: C11, G12, G17
منابع مشابه
Extreme Value Modelling with Application in Finance and Neonatal Research
Modelling the tails of distributions is important in many fields, such as environmental science, hydrology, insurance, engineering and finance, where the risk of unusually large or small events are of interest. This thesis applies extreme value models in neonatal and finance studies and develops novel extreme value modelling for financial applications, to overcome issues associated with the dep...
متن کاملBayesian estimation of the Gaussian mixture GARCH model
Bayesian inference and prediction for a GARCH model where the innovations are assumed to follow a mixture of two Gaussian distributions is performed. The mixture GARCH model can capture the patterns usually exhibited by many financial time series such as volatility clustering, large kurtosis and extreme observations. A Griddy-Gibbs sampler implementation is proposed for parameter estimation and...
متن کاملValue at Risk Estimation Using Extreme Value Theory
A common assumption in quantitative financial risk modelling is the distributional assumption of normality in the asset’s return series, which makes modelling easy but proves to be inefficient if the data exhibit extreme tails. When dealing with extreme financial events like the Global Financial Crisis of 2007-2008 while quantifying extreme market risk, Extreme Value Theory (EVT) proves to be a...
متن کاملBayesian Semiparametric GARCH Models
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کامل