In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1.
نویسندگان
چکیده
Trace amine-associated receptor 1 (TAAR1) has been implicated in the behavioral effects of amphetamine-type stimulant drugs in rodents. TAAR1 has also been suggested as a target for novel medications to treat psychostimulant addiction. We previously reported that binding affinities at TAAR1 can differ between structural analogs of psychostimulants, and species differences have been observed. In this study, we complement our previous findings with additional substances and the determination of functional activation potencies. In summary, we present here pharmacological in vitro profiles of 101 psychoactive substances at human, rat, and mouse TAAR1. p-Tyramine, β-phenylethylamine, and tryptamine were included as endogenous comparator compounds. Functional cAMP measurements and radioligand displacement assays were conducted with human embryonic kidney 293 cells that expressed human, rat, or mouse TAAR1. Most amphetamines, phenethylamine, and aminoindanes exhibited potentially physiologically relevant rat and mouse TAAR1 activation (EC50 < 5 µM) and showed full or partial (Emax < 80%) agonist properties. Cathinone derivatives, including mephedrone and methylenedioxypyrovalerone, exhibited weak (EC50 = 5-10 µM) to negligible (EC50 > 10 µM) binding properties at TAAR1. Pipradrols, including methylphenidate, exhibited no affinity for TAAR1. We found considerable species differences in activity at TAAR1 among the highly active ligands, with a rank order of rat > mouse > human. This characterization provides information about the pharmacological profile of psychoactive substances. The species differences emphasize the relevance of clinical studies to translationally complement rodent studies on the role of TAAR1 activity for psychoactive substances.
منابع مشابه
Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine.
The presence of the potent hallucinogenic psychoactive chemical N,N-dimethyltryptamine (DMT) in the human body has puzzled scientists for decades. Endogenous DMT was investigated in the 1960s and 1970s and it was proposed that DMT was involved in psychosis and schizophrenia. This hypothesis developed from comparisons of the blood and urine of schizophrenic and control subjects. However, much of...
متن کاملStructural and Functional Evolution of the Trace Amine-Associated Receptors TAAR3, TAAR4 and TAAR5 in Primates
The family of trace amine-associated receptors (TAAR) comprises 9 mammalian TAAR subtypes, with intact gene and pseudogene numbers differing considerably even between closely related species. To date the best characterized subtype is TAAR1, which activates the G(s) protein/adenylyl cyclase pathway upon stimulation by trace amines and psychoactive substances like MDMA or LSD. Recently, chemosens...
متن کاملHuman and mouse trace amine-associated receptor 1 have distinct pharmacology towards endogenous monoamines and imidazoline receptor ligands.
TAARs (trace amine-associated receptors) are G-protein-coupled receptors that respond to low abundance, endogenous amines such as tyramine and tryptamine, and represent potential targets for neuropsychiatric diseases. However, some members of this receptor subfamily either have no ligand identified or remain difficult to express and characterize using recombinant systems. In the present paper w...
متن کاملAmphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.
The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmi...
متن کاملTrace amine-associated receptor 1 displays species-dependent stereoselectivity for isomers of methamphetamine, amphetamine, and para-hydroxyamphetamine.
The synthetic amines methamphetamine (METH), amphetamine (AMPH), and their metabolite para-hydroxyamphetamine (POHA) are chemically and structurally related to the catecholamine neurotransmitters and a small group of endogenous biogenic amines collectively referred to as the trace amines (TAs). Recently, it was reported that METH, AMPH, POHA, and the TAs para-tyramine (TYR) and beta-phenylethyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 357 1 شماره
صفحات -
تاریخ انتشار 2016