Efficient Hand Articulations Tracking Using Adaptive Hand Model and Depth Map
نویسندگان
چکیده
Real-time hand articulations tracking is important for many applications such as interacting with virtual / augmented reality devices. However, most of existing algorithms highly rely on expensive and high power-consuming GPUs to achieve real-time processing. Consequently, these systems are inappropriate for mobile and wearable devices. In this paper, we propose an efficient hand tracking system which does not require high performance GPUs. In our system, we track hand articulations by minimizing discrepancy between depth map from sensor and computer-generated hand model. We also re-initialize hand pose at each frame using finger detection and classification. Our contributions are: (a) propose adaptive hand model to consider different hand shapes of users without generating personalized hand model; (b) improve the highly efficient re-initialization for robust tracking and automatic initialization; (c) propose hierarchical random sampling of pixels from each depth map to improve tracking accuracy while limiting required computations. To the best of our knowledge, it is the first system that achieves both automatic hand model adjustment and realtime tracking without using GPUs.
منابع مشابه
Efficient model-based 3D tracking of hand articulations using Kinect
We present a novel solution to the problem of recovering and tracking the 3D position, orientation and full articulation of a human hand from markerless visual observations obtained by a Kinect sensor. We treat this as an optimization problem, seeking for the hand model parameters that minimize the discrepancy between the appearance and 3D structure of hypothesized instances of a hand model and...
متن کاملFast Tracking of Hand and Finger Articulations Using a Single Depth Camera
Using hand gestures as input in human–computer interaction is of everincreasing interest. Markerless tracking of hands and fingers is a promising enabler, but adoption has been hampered because of tracking problems, complex and dense capture setups, high computing requirements, equipment costs, and poor latency. In this paper, we present a method that addresses these issues. Our method tracks r...
متن کاملOnline Adaptive PCA for Inverse Kinematics Hand Tracking
Recent approaches to real-time bare hand tracking estimate the hand’s pose and posture by fitting a virtual hand model to RGBD sensor data using inverse kinematics. It has been shown that exploiting natural hand synergies can improve the efficiency and quality of the tracking, by performing the optimization in a reduced parameter space consisting of realistic hand postures [SMRB14]. The downsid...
متن کاملArticulation estimation and real-time tracking of human hand motions
This thesis deals with the problem of estimating and tracking the full articulation of human hands. Algorithmically recovering hand articulations is a challenging problem due to the hand’s high number of degrees of freedom and the complexity of its motions. Besides the accuracy and efficiency of the hand posture estimation, hand tracking methods are faced with issues such as invasiveness, ease ...
متن کاملHAGR-D: A Novel Approach for Gesture Recognition with Depth Maps
The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its compl...
متن کامل