Penalized methods for bi-level variable selection.

نویسندگان

  • Patrick Breheny
  • Jian Huang
چکیده

In many applications, covariates possess a grouping structure that can be incorporated into the analysis to select important groups as well as important members of those groups. This work focuses on the incorporation of grouping structure into penalized regression. We investigate the previously proposed group lasso and group bridge penalties as well as a novel method, group MCP, introducing a framework and conducting simulation studies that shed light on the behavior of these methods. To fit these models, we use the idea of a locally approximated coordinate descent to develop algorithms which are fast and stable even when the number of features is much larger than the sample size. Finally, these methods are applied to a genetic association study of age-related macular degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Regularized methods for high-dimensional and bi-level variable selection

Many traditional approaches to statistical analysis cease to be useful when the number of variables is large in comparison with the sample size. Penalized regression methods have proved to be an attractive approach, both theoretically and empirically, for dealing with these problems. This thesis focuses on the development of penalized regression methods for high-dimensional variable selection. ...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Penalized regression approaches to testing for quantitative trait-rare variant association

In statistical data analysis, penalized regression is considered an attractive approach for its ability of simultaneous variable selection and parameter estimation. Although penalized regression methods have shown many advantages in variable selection and outcome prediction over other approaches for high-dimensional data, there is a relative paucity of the literature on their applications to hy...

متن کامل

Penalized Linear Unbiased Selection

We introduce MC+, a fast, continuous, nearly unbiased, and accurate method of penalized variable selection in high-dimensional linear regression. The LASSO is fast and continuous, but biased. The bias of the LASSO interferes with variable selection. Subset selection is unbiased but computationally costly. The MC+ has two elements: a minimax concave penalty (MCP) and a penalized linear unbiased ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and its interface

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2009