High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

نویسندگان

  • C. S. Suchand Sandeep
  • Sybren ten Cate
  • Juleon M. Schins
  • Tom J. Savenije
  • Yao Liu
  • Matt Law
  • Sachin Kinge
  • Arjan J. Houtepen
  • Laurens D. A. Siebbeles
چکیده

Carrier multiplication, the generation of multiple electron-hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron-hole pairs and Auger recombination. Above a mobility of ~1 cm(2) V(-1) s(-1), all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley-Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Activating Carrier Multiplication in PbSe Quantum Dot Solids by Infilling with Atomic Layer Deposition.

Carrier multiplication-the generation of multiple electron-hole pairs by a single photon-is currently of great interest for the development of highly efficient photovoltaics. We study the effects of infilling PbSe quantum-dot solids with metal oxides by atomic layer deposition on carrier multiplication. Using time-resolved microwave conductivity measurements, we find, for the first time, that c...

متن کامل

High photo-excited carrier multiplication by charged InAs dots in AlAs/GaAs/AlAs resonant tunneling diode

Abstract We present an approach for the highly sensitive photon detection based on the quantum dots (QDs) operating at temperature of 77K. The detection structure is based on an AlAs/GaAs/AlAs double barrier resonant tunneling diode combined with a layer of self-assembled InAs QDs (QDRTD). A photon rate of 115 photons per second had induced 10nA photocurrent in this structure, corresponding to ...

متن کامل

Free Carrier Generation and Recombination in PbS Quantum Dot solar cells

Time Delayed Collection Field (TDCF) and Bias Assisted Charge Extraction (BACE) experiments are used to investigate the charge carrier dynamics in PbS colloidal quantum dot solar cells. We find that free charge carrier creation is slightly field dependent, thus providing an upper limit to the fill factor. BACE measurements reveal a rather high effective mobility of 2 × 10 cm2/Vs, meaning that c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013