Generalized Cheeger inequalities for eigenvalues of non-reversible Markov chains
نویسنده
چکیده
We show lower bounds for the smallest non-trivial eigenvalue, and smallest real portion of an eigenvalue, of the Laplacian of a non-reversible Markov chain in terms of an Evolving set quantity. A myriad of Cheeger-like inequalities follow for non-reversible chains, which even in the reversible case sharpen previously known results. The same argument also produces a new Cheeger-like inequality for the smallest eigenvalue of a reversible chain, and a Cheeger-like inequality for the second largest magnitude eigenvalue of a non-reversible chain.
منابع مشابه
Eigenvalues of non-reversible Markov chains: their connection to mixing times, reversible Markov chains, and Cheeger inequalities
We show a lower bound on mixing time for a non-reversible Markov chain in terms of its eigenvalues. This is used to show a bound on the real part of the complex-valued eigenvalues in terms of the realvalued eigenvalues of a related reversible chain, and likewise to bound the second largest magnitude eigenvalue. A myriad of Cheeger-like inequalities also follow for non-reversible chains, which e...
متن کاملLaplacians and the Cheeger inequality for directed graphs
We consider Laplacians for directed graphs and examine their eigenvalues. We introduce a notion of a circulation in a directed graph and its connection with the Rayleigh quotient. We then define a Cheeger constant and establish the Cheeger inequality for directed graphs. These relations can be used to deal with various problems that often arise in the study of non-reversible Markov chains inclu...
متن کاملCheeger inequalities for transient Markov chains
We construct upper and lower bounds for Cheeger-type constants for transient Markov chains. We first treat the situation where there is a detailed balance condition and obtain bounds that rely exclusively on the first and second eigenvalues of the substochastic transition matrix. Secondly, we consider general substochastic transition matrices and develop bounds in this broader setting. The effi...
متن کاملLog-sobolev, Isoperimetry and Transport Inequalities on Graphs
In this paper, we study some functional inequalities (such as Poincaré inequalities, logarithmic Sobolev inequalities, generalized Cheeger isoperimetric inequalities, transportation-information inequalities and transportation-entropy inequalities) for reversible nearest-neighbor Markov processes on a connected finite graph by means of (random) path method. We provide estimates of the involved c...
متن کاملLogarithmic Sobolev, Isoperimetry and Transport Inequalities on Graphs
In this paper, we study some functional inequalities (such as Poincaré inequality, logarithmic Sobolev inequality, generalized Cheeger isoperimetric inequality, transportation-information inequality and transportation-entropy inequality) for reversible nearest-neighbor Markov processes on connected finite graphs by means of (random) path method. We provide estimates of the involved constants.
متن کامل