Getting start with UTDrive: driver-behavior modeling and assessment of distraction for in-vehicle speech systems
نویسندگان
چکیده
This paper describes our first step for advances in humanmachine interactive systems for in-vehicle environments of the UTDrive project. UTDrive is part of an on-going international collaboration to collect and research rich multi-modal data recorded for modeling behavior while the driver is interacting with speech-activated systems or performing other secondary tasks. A simultaneous second goal is to better understand speech characteristics of the driver undergoing additional cognitive load since dialog systems are generally not formulated for high task-stress environment (e.g., driving a vehicle). The corpus consists of audio, video, brake/gas pedal pressure, forward distance, GPS information, and CAN-Bus information. The resulting corpus, analysis, and modeling will contribute to more effective speech systems which are able to sense driver cognitive distraction/stress and adapt itself to the driver’s cognitive capacity and driving situations for improved safety while driving.
منابع مشابه
Analysis and Classification of Driver Behavior using In-Vehicle CAN-Bus Information
This paper describes recent advances in the analysis and classification of driver behavior in actual driving scenarios. We employ data obtained from the UTDrive corpus to model driving behavior and to detect if distraction due to secondary tasks is present. Hidden Markov Models (HMMs) are used to capture the sequence of driving characteristics acquired from the vehicle’s CAN-Bus (Controller Are...
متن کاملIn-vehicle Multi-channel Signal Processing and Analysis in UTDrive Project: Driver Behavior Modeling and Active Safety Systems Development
It has been pointed that most of the accidents on the roads are caused by driver faults, inattention and low performance. Therefore, future active safety systems are required to be aware of the driver status to be able to have preventative features. This probe study gives a system structure depending on multi-channel signal processing for three modules: Driver Identification, Route Recognition ...
متن کاملIntelligent Control System Design for Car Following Maneuver Based on the Driver’s Instantaneous Behavior
Due to the increasing demand for traveling in public transportation systems and increasing traffic of vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control and vehicle navigation systems. In the process of developing such systems, simulat...
متن کاملInformation fusion for robust 'context and driver aware' active vehicle safety systems
Although there is currently significant development in active vehicle safety (AVS) systems, the number of accidents, injury severity levels and fatalities has not reduced. In fact, human error, low performance, drowsiness and distraction may account for a majority in all the accident causation. Active safety systems are unaware of the context and driver status, so these systems cannot improve t...
متن کاملMANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios
Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...
متن کامل