The Cauchy Problem of Lorentzian Minimal Surfaces in Globally Hyperbolic Manifolds
نویسنده
چکیده
In this note a proof is given for global existence and uniqueness of minimal Lorentzian surface maps from a cylinder into globally hyperbolic Lorentzian manifolds for given initial values up to the first derivatives.
منابع مشابه
Nice foliations of globally hyperbolic manifolds
In the research on classical field theory on Lorentzian manifolds, over the decades it became more and more transparent that the most appropriate geometric category for classical field theory is the one of globally hyperbolic manifolds (together with their casusal embeddings). On one hand, this is due to its relatively easy and invariant definition as the category of manifolds with compact caus...
متن کاملGlobal Existence and Uniqueness of Minimal Surfaces in Globally Hyperbolic Manifolds
In this note a proof is given for global existence and uniqueness of minimal surfaces of Lorentzian type from a cylinder into certain Lorentzian manifolds for given initial values up to the first derivatives.
متن کاملAn Index Theorem for Lorentzian Manifolds with Compact Spacelike Cauchy Boundary
We show that the Dirac operator on a compact globally hyperbolic Lorentzian spacetime with spacelike Cauchy boundary is a Fredholm operator if appropriate boundary conditions are imposed. We prove that the index of this operator is given by the same expression as in the index formula of Atiyah-Patodi-Singer for Riemannian manifolds with boundary. The index is also shown to equal that of a certa...
متن کاملOn $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملHypersurfaces of Prescribed Scalar Curvature in Lorentzian Manifolds
The existence of closed hypersurfaces of prescribed scalar curvature in globally hyperbolic Lorentzian manifolds is proved provided there are barriers. 0. Introduction Consider the problem of finding a closed hypersurface of prescribed curvature F in a globally hyperbolic (n+1)-dimensional Lorentzian manifold N having a compact Cauchy hypersurface S0. To be more precise, let Ω be a connected op...
متن کامل