On causal and anticausal learning
نویسندگان
چکیده
We consider the problem of function estimation in the case where an underlying causal model can be inferred. This has implications for popular scenarios such as covariate shift, concept drift, transfer learning and semi-supervised learning. We argue that causal knowledge may facilitate some approaches for a given problem, and rule out others. In particular, we formulate a hypothesis for when semi-supervised learning can help, and corroborate it with empirical results.
منابع مشابه
Semi-supervised interpolation in an anticausal learning scenario
According to a recently stated ‘independence postulate’, the distribution Pcause contains no information about the conditional Peffect|cause while Peffect may contain information about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information from PX to assist in predicting Y from X, it should only work in anticausal direction, i.e., when Y is the cause and X is the ef...
متن کاملCausal/anticausal Decomposition for mixed-phase Description of brass and Bowed String sounds
In this paper we present a new method for the decomposition of musical sounds into causal and anticausal contributions. The algorithm is based on a particular separation of zeros of the Z-Transform (ZZT) of signal frames, currently used in speech processing for glottal source parameters estimation. Acoustics of two particular continuous interaction instruments (CII) – trumpet and violin – is di...
متن کاملA Bayesian Approach to Learning Causal Networks
Whereas acausal Bayesian networks represent probabilistic independence, causal Bayesian networks represent causal relationships. In this paper, we examine Bayesian methods for learning both types of networks. Bayesian methods for learning acausal networks are fairly well developed. These methods often employ assumptions to facilitate the construction of priors, including the assumptions of para...
متن کاملError Asymmetry in Causal and Anticausal Regression
It is generally difficult to make any statements about the expected prediction error in an univariate setting without further knowledge about how the data were generated. Recent work showed that knowledge about the real underlying causal structure of a data generation process has implications for various machine learning settings. Assuming an additive noise and an independence between data gene...
متن کاملBlind Deconvolution in Nonminimum Phase Systems Using Cascade Structure
We introduce a novel cascade demixing structure for multichannel blind deconvolution in nonminimum phase systems. To simplify the learning process, we decompose the demixing model into a causal finite impulse response (FIR) filter and an anticausal scalar FIR filter. A permutable cascade structure is constructed by two subfilters. After discussing geometrical structure of FIR filter manifold, w...
متن کامل